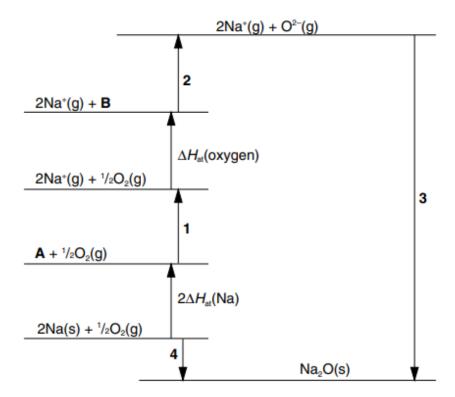
LATTICE ENERGY


1

(c) (i) Use the data in the table below, and relevant data from the Data Booklet, to calculate the lattice energy, ΔH^Φ_{latt}, of potassium oxide, K₂O(s).

energy change	value/kJ mol ⁻¹
enthalpy change of atomisation of potassium, ΔH _{at} K(s)	+89
electron affinity of O(g)	-141
electron affinity of O ⁻ (g)	+798
enthalpy change of formation of potassium oxide, ΔH_f^{\bullet} K ₂ O(s)	-361

	$\Delta H_{\text{latt}}^{\bullet} = \dots kJ \text{ mol}^{-1}$ [3]
(ii)	State whether the lattice energy of $\rm Na_2O$ would be more negative, less negative or the same as that of $\rm K_2O$. Give reasons for your answer.
	[1]
9701/42/M	/J/17

- 2 (a) Write an equation to represent the lattice energy of sodium oxide, Na₂O.
 - (b) The Born-Haber cycle shown may be used to calculate the lattice energy of sodium oxide.

(i) In the spaces below, identify the species A and B in the cycle, including the appropriate state symbols.

species A species B

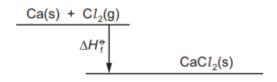
(ii) Identify the enthalpy changes labelled by the numbers 1 to 4 in the cycle.

1

2

3

(c) Use your cycle, the following data, and further data from the *Data Booklet* to calculate a value for the lattice energy of sodium oxide.


Data	enthalpy change of atomisation for Na(s) +107 kJ mol ⁻¹ first electron affinity of oxygen -141 kJ mol ⁻¹ second electron affinity of oxygen +798 kJ mol ⁻¹ enthalpy change of formation of Na ₂ O(s) -414 kJ mol ⁻¹ enthalpy change of atomisation for oxygen = half the bond energy for O ₂ .	
	[3]	
d) (i)	How would you expect the magnitude of lattice energy of magnesium oxide to compare with that of sodium oxide? Explain your reasoning.	
(ii)	State a use of magnesium oxide, and explain how the use relates to your answer in part (d) (i).	
	[4]	
	[Total: 11]	
01/4 O/N	N/02	

Fahad H. Ahmad +92 323 509 4443

- 2 (a) Calcium metal reacts with chlorine gas to form calcium chloride, CaCl₂.
 - (i) Write an equation, including state symbols, to represent the lattice energy of calcium chloride, ${\rm CaC}\,l_2$.

.....[1]

(ii) Complete a fully labelled Born-Haber cycle that could be used to calculate the lattice energy, ΔH^e_{latt}, for calcium chloride.

[2]

(iii) Use your answer to (ii) and the following data, together with relevant data from the Data Booklet, to calculate a value for $\Delta H_{\text{latt}}^{\text{e}}$ for calcium chloride.

standard enthalpy change of formation of $CaCl_2(s)$, ΔH_f^e	-796 kJ mol ⁻¹
standard enthalpy change of atomisation of Ca(s), $\Delta H_{\rm at}^{\rm e}$	+178 kJ mol ⁻¹
electron affinity of chlorine atoms	-349 kJ mol⁻¹

$$\Delta H_{\text{latt}}^{+} = \dots kJ \, \text{mol}^{-1}$$
 [3]

9701/42/F/M/16

Fahad H. Ahmad +92 323 509 4443

1	c)	(i	١	The	equation	for which	AH is f	the lattice	energy for	MgCl is shown.
v	u,	- (1	,	HILL	equation	TOT WITHCH		uie iaulee	chergy loi	IVIGOTIO SHOWII.

$$Mg^{+}(g) + Cl^{-}(g) \rightarrow MgCl(s)$$

Use the equation, the following data, and relevant data from the *Data Booklet* to calculate a value for the lattice energy of MgC*l*. You might find it helpful to construct an energy cycle.

electron affinity of $Cl(g) = -349 \,\mathrm{kJ} \,\mathrm{mol}^{-1}$ enthalpy change of atomisation of Mg(s) = +147 kJ mol $^{-1}$ enthalpy change of formation of MgC $l(s) = -106 \,\mathrm{kJ} \,\mathrm{mol}^{-1}$

	lattice energy MgCl =kJ mol ⁻¹ [3]
(ii)	Suggest how the lattice energies of ${\rm MgC}l_2$ and ${\rm NaC}l$ will compare to that of ${\rm MgC}l$. Explain your answers.
	$MgCl_{\scriptscriptstyle 2}$ and $MgCl$
	NaCl and MgCl
	[3]

9701/42/O/N/17

(d) Use the data below, and other suitable data from the *Data Booklet*, to calculate the lattice energy of sodium oxide, $\Delta H_{\text{latt}}^{\text{e}}$ Na₂O(s).

energy change	value/kJ mol ⁻¹
standard enthalpy change of formation of sodium oxide, $\Delta H_1^{\Phi} \text{Na}_2 O(s)$	-416
standard enthalpy change of atomisation of sodium, $\Delta H_{\mathrm{at}}^{\bullet} \mathrm{Na}(\mathrm{s})$	+109
electron affinity of O(g)	-142
electron affinity of O ⁻ (g)	+844

$\Delta H_{latt}^{\bullet} Na_2O(s) =kJ mol^{-1} [4]$	H _{lat}	Na ₂ O(s)	=		kJ	l mol-1	[4]	1
---	------------------	----------------------	---	--	----	---------	-----	---

(e) State how $\Delta H_{\text{latt}}^{\text{e}} \text{Na}_2 S(s)$ differs from $\Delta H_{\text{latt}}^{\text{e}} \text{Na}_2 O(s)$. Indicate this by placing a tick (\checkmark) in the appropriate box in the table.

$\Delta H_{\mathrm{latt}}^{\Phi} \mathrm{Na_2S(s)}$ is more exothermic than $\Delta H_{\mathrm{latt}}^{\Phi} \mathrm{Na_2O(s)}$	$\Delta H_{\mathrm{latt}}^{\mathrm{e}} \mathrm{Na_2S(s)}$ is the same as $\Delta H_{\mathrm{latt}}^{\mathrm{e}} \mathrm{Na_2O(s)}$	$\Delta H_{\mathrm{latt}}^{\Phi} \mathrm{Na_2S}(\mathrm{s}) \mathrm{is} \mathrm{less}$ exothermic than $\Delta H_{\mathrm{latt}}^{\Phi} \mathrm{Na_2O}(\mathrm{s})$

Explain your answer.	
	[2

9701/43/M/J/18

(c) (i) Write a chemical equation representing the lattice energy of AgBr.

(ii) Use the following data to calculate a value for the lattice energy of AgBr(s).

first ionisation energy of silver = $+731 \text{ kJ mol}^{-1}$ electron affinity of bromine = -325 kJ mol^{-1} enthalpy change of atomisation of silver = $+285 \text{ kJ mol}^{-1}$ enthalpy change of atomisation of bromine = $+112 \text{ kJ mol}^{-1}$ enthalpy change of formation of AgBr(s) = -100 kJ mol^{-1}

.....

(iii) How might the lattice energy of AgCl compare to that of AgBr? Explain your answer.

[4

In photography a bromide ion absorbs a photon and releases an electron which reduces a silver ion to a silver atom.

$$Br^- \rightarrow Br + e^-$$

$$Ag^+ + e^- \rightarrow Ag$$

(d) Predict whether it would require more energy or less energy to initiate this process in a AgCl emulsion, compared to a AgBr emulsion. Explain your answer.

.....[1]

- •

(c) (i) Use the following data and data from the Data Booklet to construct a Born-Haber cycle and calculate the lattice energy of BaS.

standard enthalpy change of formation of BaS(s)	-460 kJ mol ⁻¹
standard enthalpy change of atomisation of Ba(s)	+180 kJ mol ⁻¹
standard enthalpy change of atomisation of S(s)	+279 kJ mol ⁻¹
electron affinity of the sulfur atom	-200 kJ mol ⁻¹
electron affinity of the S ⁻ ion	+640 kJ mol ⁻¹

	lattice energy = kJ mol ⁻¹
ii)	Explain whether the magnitude of the lattice energy of BaS is likely to be greater or less than that of BaO.
	[4]

9701_w09_qp_42