Aluminium

Question Paper

Level	O Level
Subject	Chemistry
Exam Board	Cambridge International Examinations
Topic	Metals
Sub-Topic Sub-Topic	Aluminium
Booklet	Question Paper

Time Allowed: 18 minutes

Score: /15

Percentage: /100

Save My Exams! - The Home of Revision

For more awesome GCSE and A level resources, visit us at www.savemyexams.co.uk/

- 1 Which gases are all present at the positive electrode during the manufacture of aluminium?
 - A CO, H₂, CO₂
 - B CO, SO₂, H₂O
 - C O₂, CO, CO₂
 - **D** SO₂, H₂, O₂
- 2 An alloy of aluminium is used in the construction of aircraft.

Why is pure aluminium never used?

- A Pure aluminium cannot be manufactured.
- **B** Pure aluminium conducts electricity.
- **C** Pure aluminium is less dense than its alloys.
- **D** Pure aluminium is too malleable.
- 3 The diagram shows apparatus that can be used to extract aluminium.

What are J, K and L?

		T	
	J		L
Α	negative electrode	aluminium oxide + cryolit	aluminium
В	negative electrode	cryolite	aluminium oxide
С	positive electrode	aluminium oxide	cryolite
D	positive electrode	aluminium oxide + cryolit	aluminium

Save My Exams! - The Home of Revision

For more awesome GCSE and A level resources, visit us at www.savemyexams.co.uk/

- In the electrolysis of molten aluminium oxide for the extraction of aluminium, the following three reactions take place.
 - 1 $Al^{3+} + 3e^- \rightarrow Al$
 - $2 20^{2-} \rightarrow O_2 + 4e^{-}$
 - $3 \quad C + O_2 \rightarrow CO_2$

Which reactions take place at the positive electrode?

- A 1 only
- **B** 2 only
- C 1 and 3 only D 2 and 3 only
- Aluminium is manufactured by the electrolysis of molten aluminium oxide.

Which gas is **not** formed during this process?

- A carbon dioxide
- **B** carbon monoxide
- C oxygen
- **D** sulfur dioxide
- 6 Which gases are formed during the production of aluminium by electrolysis of molten aluminium oxide?
 - carbon dioxide, carbon monoxide, oxygen
 - carbon dioxide, carbon monoxide, sulfur dioxide
 - carbon dioxide, oxygen, sulfur dioxide
 - carbon monoxide, oxygen, sulfur dioxide
- Which statement about the material used for aircraft bodies is correct?

Aircraft bodies are made from

- an aluminium alloy because pure aluminium is too soft. Α
- В pure aluminium because of its high melting point.
- C pure aluminium because of its low density.
- pure aluminium because of its resistance to corrosion.

8 In the electrolysis of aluminium oxide to extract pure aluminium a compound called cryolite is first added to the oxide.

What is the reason for adding the cryolite?

- A to reduce the corrosion of the carbon electrodes by oxygen
- **B** to reduce energy costs
- **C** to enable the aluminium ions and oxygen ions to move to the electrodes
- D to prevent the aluminium formed from being oxidised back to aluminium oxide
- 9 The diagram shows the electrolytic production of aluminium.

What are the products at the electrodes?

	negative electrode	positive electrode
Α	solid aluminium	hydrogen
В	solid aluminium	oxygen
С	liquid aluminium	hydrogen
D	liquid aluminium	oxygen

Save My Exams! - The Home of Revision

For more awesome GCSE and A level resources, visit us at www.savemyexams.co.uk/

10 Aluminium is used to make saucepans because of its apparent lack of reactivity.

Which property of aluminium explains its unreactivity?

- **A** It has a high electrical conductivity.
- **B** It has a low density.
- C It has a surface layer of oxide.
- **D** It is in Group III of the Periodic Table.
- 11 Zinc and aluminium both react with dilute hydrochloric acid.

Why does zinc react more quickly than aluminium?

- **A** Aluminium is lower than hydrogen in the reactivity series.
- **B** Aluminium has an oxide coating.
- **C** Zinc is an amphoteric element.
- **D** Zinc is a transition metal.
- 12 Which statement about the extraction of aluminium from aluminium oxide is correct?
 - **A** Aluminium is extracted by heating its oxide with carbon.
 - **B** Aluminium is extracted using electrolysis and is collected at the anode (positive electrode).
 - **C** Aluminium is extracted using platinum electrodes and direct current.
 - **D** Molten cryolite is used as a solvent for aluminium oxide.
- 13 From your knowledge of the manufacture of both aluminium and iron, what is the order of chemical reactivity of aluminium, carbon and iron towards oxygen?

	most reactive		
Α	aluminium	carbon	iron
В	aluminium	iron	carbon
С	carbon	aluminium	iron
D	carbon	iron	aluminium

14 The diagram shows the electrolytic production of aluminium.

What is the physical state of the aluminium oxide and aluminium during this process?

	aluminium oxide	aluminium
Α	liquid	liquid
В	liquid	solid
С	solid	liquid
D	solid	solid

- 15 Why does aluminium have an apparent lack of reactivity?
 - A Aluminium has a coating of aluminium oxide, preventing further reaction.
 - **B** Aluminium has a giant molecular structure that is too hard to break.
 - **C** Aluminium is low in the reactivity series.
 - **D** The activation energy for the reaction of aluminium with other elements is too high.