For Live Classes, Recorded Lectures, Notes & Past Papers visit: www.megalecture.com

VECTORS 4024 QUESTIONS COMPILED BY: MUSTAFA ASIF

37. Vectors in two dimensions

 describe a translation by using a vector represented by

$$\begin{pmatrix} x \\ y \end{pmatrix}$$
, \overrightarrow{AB} or a

- · add and subtract vectors
- · multiply a vector by a scalar
- calculate the magnitude of a vector $\begin{pmatrix} x \\ y \end{pmatrix}$ as $\sqrt{x^2 + y^2}$
- represent vectors by directed line segments
- use the sum and difference of two vectors to express given vectors in terms of two coplanar vectors
- · use position vectors

Vectors will be printed as \overline{AB} or \mathbf{a} and their magnitudes denoted by modulus signs, e.g. $|\overline{AB}|$ or $|\mathbf{a}|$.

In their answers to questions candidates are expected to indicate **a** in some definite way, e.g. by an arrow \overrightarrow{AB} or by underlining as follows **a**.

WEET ORSEAD RETURNS **COMPILED BY : MUSTAFA ASIF**

Vectors

M/J19/12/Q25

1 (a)
$$P = \begin{pmatrix} 4 & 0 \\ -2 & 3 \end{pmatrix} \qquad Q = \begin{pmatrix} 1 & 2 \\ 0 & -1 \end{pmatrix}$$
 Evaluate PQ.

(b)
$$\mathbf{M} = \begin{pmatrix} 3 & -1 \\ 2 & k \end{pmatrix}$$

The determinant of matrix M is -4.

(i) Find the value of k.

$$k = \dots$$
 [1]

(ii) Find M⁻¹.

[1]

Wectors 4124 QUESTIONS COMPILED BY: MUSTAFA ASIF

M/J19/21/Q9

2 (a)

NOT TO SCALE

In the diagram, $\overrightarrow{PQ}=4\mathbf{p}$, $\overrightarrow{QR}=3\mathbf{q}$ and $\overrightarrow{PT}=\mathbf{p}+2\mathbf{q}$. $\overrightarrow{QU}=\frac{2}{3}\overrightarrow{QR}$ and $\overrightarrow{PT}=\frac{2}{3}\overrightarrow{PS}$.

- (i) Express, as simply as possible, in terms of p and/or q,
 - (a) \$\overline{PS}\$,

 $\overrightarrow{PS} = \dots$ [1]

(b) *SR*

 $\overrightarrow{SR} = \dots$ [2]

State the name of the special quadrilateral PQRS.
 Using vectors, give a reason for your answer.

because

.....

(iii) Find, in its simplest form, the ratio $|\overrightarrow{PQ}|$: $|\overrightarrow{SR}|$.

...... [2]

COMPILED BY : MUSTAFA ASIF

(b)
$$\overrightarrow{AB} = \begin{pmatrix} 3 \\ 2 \end{pmatrix}$$
 $\overrightarrow{BC} = \begin{pmatrix} 6 \\ -2 \end{pmatrix}$ $\overrightarrow{CD} = \begin{pmatrix} -7 \\ -3 \end{pmatrix}$

- (i) Find \overrightarrow{AD} .
- (ii) Find $|\overrightarrow{BC}|$.

[2]

(iii) Given that E is the midpoint of BC, find \overrightarrow{AE} .

$$\overrightarrow{AE} = \left(\begin{array}{c} \end{array}\right)$$
 [2]

M/J19/22/Q10

https://www.facebook.com/groups/hbdumerkhan/

youtube.com/c/MegaLecture/ +92 336 7801123

WEET ORS AND SET WESTONS **COMPILED BY: MUSTAFA ASIF**

3 (a) $f = \begin{pmatrix} 4 \\ -3 \end{pmatrix}$ $g = \begin{pmatrix} 1 \\ -5 \end{pmatrix}$

(i) Find g − 2f.

(ii) Petra writes |f|>|g|. Show that Petra is wrong.

 $O, A \text{ and } B \text{ are points with } \overrightarrow{OA} = \mathbf{a} \text{ and } \overrightarrow{OB} = \mathbf{b}.$

P is the point on OA such that $OP = \frac{1}{3}OA$.

- O, Q and R lie on a straight line and Q is the midpoint of PB.
- Find PB in terms of a and b.

COMPILED BY : MUSTAFA ASIF

Find OQ in terms of a and b.
 Give your answer in its simplest form.

 $\overrightarrow{OQ} = \dots$ [2]

(iii) QR = 2OQ.

Show that AR is parallel to PB.

[3]

WECTORS 4124 QUESTIONS COMPILED BY: MUSTAFA ASIF

SM18/12/Q7

4

ABCD is a parallelogram.

X is the point on BC such that BX: XC = 2:1.

$$\overrightarrow{AB} = 2\mathbf{p}$$
 and $\overrightarrow{AD} = 3\mathbf{q}$.

Find, in terms of p and q,

(a)
$$\overrightarrow{AC}$$
,

Answer
$$\overrightarrow{AC}$$
 =[1]

(b)
$$\overrightarrow{AX}$$
,

Answer
$$\overrightarrow{AX}$$
 =[1]

(c)
$$\overrightarrow{XD}$$
.

Answer
$$\overrightarrow{XD}$$
 =[1]

O/N18/11/Q23

https://www.facebook.com/groups/hbdumerkhan/

youtube.com/c/MegaLecture/ +92 336 7801123

WECTORS 4124 QUESTIONS COMPILED BY: MUSTAFA ASIF

5

In the diagram, ABCD is a parallelogram. X is the point on BC such that BX: XC = 3:1. $\overrightarrow{AB} = 6p$ and $\overrightarrow{AD} = 8q$.

- (a) Express \overrightarrow{BX} in terms of p and/or q.
- (b) Express \overrightarrow{AX} in terms of p and/or q.

- Answer[1]
- (c) Y is the point such that $\overrightarrow{CY} = 3p + q$.
 - (i) Express \overrightarrow{AY} in terms of p and/or q.

Answer [1]

(ii) Find the ratio AX: AY.

Answer : [11]

WEET ORSEAL SET WIE STONS

COMPILED BY: MUSTAFA ASIF

W18/12/Q25

6 In the diagram, ADB and ACF are straight lines.

BC intersects DF at E.

AC: CF = 2:1.

$$\overrightarrow{DB} = \mathbf{p}, \overrightarrow{BE} = 3\mathbf{q}, \overrightarrow{EC} = 2\mathbf{q} \text{ and } \overrightarrow{AC} = 3\mathbf{p} + 5\mathbf{q}.$$

(a) Express \overrightarrow{AB} in terms of p.

Answer
$$\overrightarrow{AB} = \dots$$
 [1]

(b) Express \(\overline{CF}\) in terms of p and/or q.

Answer
$$\overrightarrow{CF} = \dots$$
 [1]

(c) Express EF in terms of p and/or q.

Answer
$$\overrightarrow{EF} = \dots [1]$$

(d) $\overrightarrow{EF} = k\overrightarrow{DE}$.

Find k.

O/N18/21/Q7

- 7 The position vector, \overrightarrow{OA} , of point A is $\begin{pmatrix} -4 \\ 7 \end{pmatrix}$ and $\overrightarrow{AB} = \begin{pmatrix} 6 \\ -3 \end{pmatrix}$.
 - (a) Find the position vector, \(\overline{OB} \), of point B.
- Answer $\overrightarrow{OB} = \left(\begin{array}{c} \end{array}\right)$ [1]

(b) Find \overrightarrow{AB} .

Answer[2]

(c) Given that $\overrightarrow{AB} = 3\overrightarrow{CB}$, find the coordinates of point C.

Answer (.....) [2]

(d)	Lin	e L is parallel to \overrightarrow{AB} and passes through the point (-2, 5).
	(i)	Find the equation of line L .
		Answer[3]
	(ii)	Line M is perpendicular to line L and passes through the origin.
		Find the equation of line M .

M/J18/11/Q21

For Live Classes, Recorded Lectures, Notes & Past Papers visit: <u>Wewtors 4124 tules 90001s</u>

COMPILED BY : MUSTAFA ASIF

	(3)	1	(-4)
8	$\mathbf{p} = \begin{pmatrix} 3 \\ 4 \end{pmatrix}$	$\mathbf{q} =$	3

(a) Write 3p - q as a column vector.

Answer () [1]

(b) R is the point (11, -2) and O is the point (0, 0). The vector \overrightarrow{OR} can be written in the form $\mathbf{p} + n\mathbf{q}$, where n is an integer. Find the value of n.

Answer $n = \dots [2]$

M/J18/22/Q8

WECTORS 4124 QUESTIONS COMPILED BY: MUSTAFA ASIF

9

OYC is a triangle.

A is a point on OY and B is a point on CY.

AB is parallel to OC.

AC and OB intersect at X.

(a) Prove that triangle ABX is similar to triangle COX. Give a reason for each statement you make.

×	
L3	r:

b)	\overrightarrow{OA}	= $3a$ and \overrightarrow{OC} = $6c$ and $CB : BY = 1 : 2.$		
	Fine	l, as simply as possible, in terms of a and/or c		
	(i)	\overrightarrow{AB} ,		
	(ii)	\overrightarrow{CY} .	Answer Answer	$\overrightarrow{AB} = \dots [1]$ $\overrightarrow{CY} = \dots [2]$
c)	Fine	1, in its simplest form, the ratio		
	(i)	OX:XB,		
	(ii)	area of triangle COX ; area of triangle ABX ,	Answer	[2]
	(iii)	area of triangle AYB : area of trapezium $OABC$.	Answer	[1]
			Answer	[1]

WECTORS 4124 QUESTIONS COMPILED BY: MUSTAFA ASIF

O/N17/11/Q24

10

In the diagram, ABC and AFE are straight lines.

$$\overrightarrow{AB} = 6a$$
 and $\overrightarrow{BF} = 2b$.

(a) Express \overrightarrow{AF} in terms of a and b.

Answer	 F11
THE RESERVE AND ADDRESS.	

- (b) $\overrightarrow{AE} = 9a + kb$.
 - (i) Find k.

(ii) ED is parallel to BC, CD is parallel to BF and BC = AB.

Find, in terms of a and/or b,

(a) \$\overline{CD}\$,

Answer[1]

(b) DE.

Answer [1]

WECTORS 41 24 TUP STONS COMPILED BY: MUSTAFA ASIF

O/N17/12/Q27

11

In the diagram, $\overrightarrow{OP} = \begin{bmatrix} -3\\4 \end{bmatrix}$

$$\overrightarrow{PQ} = \begin{pmatrix} 2 \\ 0 \end{pmatrix}$$
.

(a) Find $|\overrightarrow{OP}| + |\overrightarrow{PQ}|$.

Answer[3]

- (b) T is the point where $\overrightarrow{PT} = k\overrightarrow{PQ}$.
 - (i) Express \overrightarrow{OT} as a column vector in terms of k.

(ii) M is the point such that O, T and M lie on a straight line and $\overrightarrow{OM} = \begin{pmatrix} 24\\16 \end{pmatrix}$. Find the value of k.

Answer
$$k =$$
 [2]

WECTORS 4124 QUESTIONS COMPILED BY: MUSTAFA ASIF

O/N17/21/Q10(b)

12 The diagram shows triangle PRS.

Q is the midpoint of PR.

$$\overrightarrow{PQ} = \begin{pmatrix} 6 \\ 3 \end{pmatrix}$$
 and $\overrightarrow{PS} = \begin{pmatrix} 8 \\ -2 \end{pmatrix}$.

(i) Find \overrightarrow{SR} .

Answer [2]

(ii) T is the point on SR such that ST:TR=1:3.

Find \overrightarrow{PT} .

Answer [2]

WECTORS 4124 QUESTIONS COMPILED BY: MUSTAFA ASIF

M/J17/11/Q23

13

OPRQ is a parallelogram and S is a point on PR such that PS: SR = 1:3.

$$\overrightarrow{\mathit{OP}} = \mathbf{p} \text{ and } \overrightarrow{\mathit{OQ}} = \mathbf{q}.$$

(a) (i) Express PQ in terms of p and/or q.

Answer[1]

(ii) Express $\overline{\mathcal{Q}}$, as simply as possible, in terms of p and/or q.

Answer[1]

- **(b)** T is a point on QS extended such that $\overline{QT} = \frac{4}{3} \overline{QS}$.
 - (i) Express \overrightarrow{PT} , as simply as possible, in terms of \mathbf{p} and/or \mathbf{q} .

Answer[2]

(ii) What can you conclude about the points O, P and T?

_____[1]

WECTORS 4124 QUESTIONS COMPILED BY: MUSTAFA ASIF

M/J17/12/Q21

14

OACB is a parallelogram.

 $\overrightarrow{OA} = a$ and $\overrightarrow{OB} = b$.

P and Q are points on OC such that OP = PQ = QC.

- (a) Express, as simply as possible, in terms of a and b,
 - (i) OP,

Answer	[1	
--------	----	--

(ii) BP.

Answer[1]

(b) Show that triangles OAQ and CBP are congruent.

[2]

WECTORS 4124 QUESTIONS COMPILED BY: MUSTAFA ASIF

O/N16/11/Q19

15

The diagram shows the points O and R and the vectors a and b.

(a) Given that
$$\overrightarrow{OP} = 2a$$
, mark and label the position of P on the grid. [1]

(b) Given that
$$\overrightarrow{OQ} = 2\mathbf{b} - \mathbf{a}$$
, mark and label the position of Q on the grid. [1]

(c) Express \overrightarrow{OR} in terms of a and b.

Answer
$$\overline{OR} = \dots$$
 [2]

WECTORS 41 24 TUP STONS COMPILED BY: MUSTAFA ASIF

O/N16/21/Q11(a)

16 (a)

In the diagram, $\overrightarrow{AB} = \begin{pmatrix} -6 \\ 11 \end{pmatrix}$, $\overrightarrow{AC} = \begin{pmatrix} 12 \\ -5 \end{pmatrix}$.

Find AC.

Answer [2]

- (ii) D is the point such that $\overrightarrow{AD} = \begin{pmatrix} 0 \\ k \end{pmatrix}$, where k > 0.

 BD is parallel to AC.
 - (a) Show that $\overrightarrow{BD} = \begin{pmatrix} 6 \\ k-11 \end{pmatrix}$.

[1]

(b) Find k.

(c) Find the difference between the lengths of AD and AC.

inswer[1]

WECTORS 4124 QUESTIONS COMPILED BY: MUSTAFA ASIF

O/N16/Q10(a)

17 (a)

ACB and OCD are straight lines.

AC: CB = 1:2. $\overrightarrow{OA} = 3a$ and $\overrightarrow{OB} = 6b$.

- Express AB in terms of a and b.
- Answer[1]
- (ii) Express \overrightarrow{AC} in terms of a and b.

Answer[1]

(iii) $\overrightarrow{BD} = 5a - b$.

Showing your working clearly, find OC: CD.

Angulor - [41

MARKING SCHEME

Question	Answer	Marks	Partial Marks
1(a)	$\begin{pmatrix} 4 & 8 \\ -2 & -7 \end{pmatrix}$	2	B1 for two or three correct elements
1(b)(i)	-2	1	
1(b)(ii)	$-\frac{1}{4} \begin{pmatrix} -2 & 1 \\ -2 & 3 \end{pmatrix}$ oe isw	1	$\mathbf{FT} -\frac{1}{4} \begin{pmatrix} their k & 1 \\ -2 & 3 \end{pmatrix}$
	or $ \left(\frac{1}{2} - \frac{1}{4} \right) $ oe isw		

			1
2(a)(i)(a)	$\frac{3}{2}$ (p + 2q) oe simplified expression	1	
2(a)(i)(b)	$\frac{5}{2}\mathbf{p} \text{ or } 2\frac{1}{2}\mathbf{p}$ or 2.5 \mathbf{p}	2	M1 for a correct vector route
2(a)(ii)	Trapezium	B1	
	\overrightarrow{PQ} is a multiple of \overrightarrow{SR} or PQ is parallel to SR since \overrightarrow{PQ} =4p and \overrightarrow{SR} =2.5p oe	B1	
2(a)(iii)	8:5	2	FT their \overrightarrow{SR} of form $k\mathbf{p}$ B1 for 4 : 2.5 oe
2(b)(i)	$\begin{pmatrix} 2 \\ -3 \end{pmatrix}$ final answer	1	
2(b)(ii)	6.32 or 6.324 to 6.325	2	M1 for $6^2 + (-2)^2$
2(b)(iii)	$\binom{6}{1}$ final answer	2	B1 for $\begin{pmatrix} 3 \\ -1 \end{pmatrix}$

3(a)(i)	$\begin{pmatrix} -7 \\ 1 \end{pmatrix}$ final answer	1	
	(1)		

Question	Answer	Marks	Partial Marks
3(a)(ii)	$4^2 + (\pm 3)^2$	М1	
	$1^2 + (\pm 5)^2$	M1	
	Correct concluding statement eg	A1	.01
	$\sqrt{25} < \sqrt{26}$ or $5 > 5.1[0]$ wrong or $ \mathbf{f} = 5$ $ \mathbf{g} = 5.099$ so $ \mathbf{f} $ is not greater than $ \mathbf{g} $		

Question	Answer	Marks	Part marks
4(a)	$2\mathbf{p} + 3\mathbf{q}$	1	
4(b)	2p + 2q	1	
4(c)	-2p+q ft	1	Accept 3q – their (b) ft

$5(\mathbf{b}) \qquad \mathbf{6p} + \mathbf{6q} \text{ isw} \qquad 1 \qquad \mathbf{FT} \mathbf{6p} + their \mathbf{(a)} \text{ isw}$	
5(c)(i) $9p + 9q$ oe 1	
5(c)(ii) 2:3 oe 1	

6(a)	3 p	1	
6(b)	$\frac{1}{2}(3\mathbf{p} + 5\mathbf{q})$ oe	1	
6(c)	$\frac{1}{2}(3\mathbf{p} + 9\mathbf{q})$ oe	1	FT 2q oe + their (b) isw
6(d)	1.5 oe	2	B1 for $[\overrightarrow{DE} =] \mathbf{p} + 3\mathbf{q}$; or for $k(\mathbf{p} + 3\mathbf{q})$

Question	Answer	Marks	Partial Marks
7(a)	$\begin{pmatrix} 2 \\ 4 \end{pmatrix}$	1	
7(b)	6.71 or 6.708	2	M1 for $6^2 + (-3)^2$ oe
7(c)	(0, 5)	2	FT their (a) ((their 2 – 2), (their 4 + 1)) B1 for one value in coordinates correct or for $\overline{CB} = \begin{bmatrix} 2 \\ -1 \end{bmatrix}$ soi
7(d)(i)	$y = -\frac{1}{2}x + 4$ oe final answer	3	B2 for $y = -\frac{1}{2}x + c$ oe OR M1 for gradient = $\frac{-3}{6}$ soi M1 for (-2, 5) substituted into $y = their mx + c$
7(d)(ii)	y = 2x oe	1	FT their gradient from (d)(i)

8(a)	$\begin{pmatrix} 13 \\ 9 \end{pmatrix}$	1
8(b)	n = -2	$\mathbf{M1} \text{ for } \begin{pmatrix} 3\\4 \end{pmatrix} + n \begin{pmatrix} -4\\3 \end{pmatrix} = \begin{pmatrix} 11\\-2 \end{pmatrix}$ or $3 + (-4n) = 1$ or $4 + 3n = -2$
1		

9(a)	$\angle BAX = \angle OCX$, alternate [angles] $\angle ABX = \angle COX$, alternate [angles] $\angle AXB = \angle CXO$, [vertically] opposite	3	B1 for two correct pairs of angles B1 for correct reason for one pair of angles
9(b)(i)	4c	1	
9(b)(ii)	9a - 6c or 3(3a - 2c)	2	B1 for answer $9\mathbf{a} + k\mathbf{c}$ or $k\mathbf{a} - 6\mathbf{c}$ $(k \neq 0)$
9(c)(i)	3:2	2	B1 for $3k : 2k$, where k is an integer
9(c)(ii)	9:4	1	FT their 3^2 : their 2^2
9(c)(iii)	4:5	1	

10(a)	6 a + 2 b oe	1	
10(b)(i)	3	1	
10(b)(ii)(a)	3 b ; or FT <i>k</i> b	1	
10(b)(ii)(b)	−3 a	1	

11(a)	7	3	M1 for $ \overrightarrow{OP} = \sqrt{(-3)^2 + (4)^2}$ B1 for $ \overrightarrow{PQ} = 2$
11(b)(i)	$\begin{pmatrix} -3+2k\\4 \end{pmatrix}$ oe	1	<i>(</i> 2)
11(b)(ii)	$4\frac{1}{2}$ oe	2	B1 for expressing \overrightarrow{OM} as a multiple (by 4) of \overrightarrow{OT} or B1 for T is $(6, 4)$; or for $\overrightarrow{OT} = \begin{pmatrix} 6 \\ 4 \end{pmatrix}$

1		l	1		
	12(i)	(4)		2	B1 for one component correct
		(8)	, 4		or M1 for $2 \binom{6}{3} - \binom{8}{-2}$ oe
					After 0 scored, SC1 for answer $\begin{pmatrix} -4 \\ -8 \end{pmatrix}$
	12(ii)	(9)		2	B1 for one component correct
		(0)			or M1 for $-\frac{3}{4}$ (their \overline{SR}) or $\frac{1}{4}$ (their \overline{SR}) so

13(a)(i)	q-p	1	
13(a)(ii)	$\mathbf{p} - \frac{3}{4}\mathbf{q} \text{ or } \frac{4\mathbf{p} - 3\mathbf{q}}{4}$	1	
13(b)(i)	$\overline{PT} = \frac{1}{3}\mathbf{P}$	2	M1 for $\overrightarrow{PT} = \overrightarrow{PS} + \frac{1}{3} \overrightarrow{QS}$ soi or $\overrightarrow{PT} = \overrightarrow{PQ} + \overrightarrow{QT}$ soi
13(b)(ii)	O, P and T are collinear oe	1	e.g. T is on OP produced

14(a)(i)	$\frac{1}{3}\mathbf{a} + \frac{1}{3}\mathbf{b} \text{ or } \frac{1}{3}(\mathbf{a} + \mathbf{b}) \text{ or } \frac{\mathbf{a} + \mathbf{b}}{3}$ final answer	1	
14(a)(ii)	$\frac{1}{3}\mathbf{a} - \frac{2}{3}\mathbf{b} \text{ or } \frac{1}{3}(\mathbf{a} - 2\mathbf{b}) \text{ or } \frac{\mathbf{a} - 2\mathbf{b}}{3}$ final answer	1	
14(b)	Any two pairs of vectors from $\overrightarrow{OA} = \overrightarrow{BC}$ oe $\overrightarrow{OQ} = \overrightarrow{PC}$ oe $\overrightarrow{QA} = \overrightarrow{BP}$ oe Alternative method: $OA = BC$ $OQ = PC$ $\angle AOQ = \angle BCP$	2	B1 for any one pair of vectors stated B1 for two of these pairs of sides stated or one of these pairs of sides and this pair of angles stated

15 (a)	the point P marked correctly	1	
(b)	the point Q marked correctly	1	
(c)	- a - 2 b oe	2	C1 for -a ; or for -2b

16 (a) (i)	13	2	M1 for $\sqrt{(-5)^2 + 12^2}$
(ii) (a)	$[\overrightarrow{BD} =] \overrightarrow{BA} + \overrightarrow{AD} = \begin{pmatrix} 6 \\ -11 \end{pmatrix} + \begin{pmatrix} 0 \\ k \end{pmatrix} = \begin{pmatrix} 6 \\ k - 11 \end{pmatrix}$ \mathbf{AG}	1	Or $[\overrightarrow{BD} =] \overrightarrow{AD} - \overrightarrow{AB} = \begin{pmatrix} 0 \\ k \end{pmatrix} - \begin{pmatrix} -6 \\ 11 \end{pmatrix} = \begin{pmatrix} 6 \\ k - 11 \end{pmatrix}$

17 (a) (i)	$6\mathbf{b} - 3\mathbf{a}$ oe isw	1	
(ii)	$2\mathbf{b} - \mathbf{a}$ oe isw	1ft	
(iii)	2:3 cao NB www	4	M1+ M1 for two of $\overrightarrow{OC} = \overrightarrow{OA} + \overrightarrow{AC}$ $\overrightarrow{CD} = \overrightarrow{CB} + \overrightarrow{BD}$ $\overrightarrow{OD} = \overrightarrow{OB} + \overrightarrow{BD}$ A1 for $\overrightarrow{OC} = 2\mathbf{a} + 2\mathbf{b}$ ft or $\overrightarrow{CD} = 3\mathbf{a} + 3\mathbf{b}$ ft or $\overrightarrow{OD} = 5\mathbf{a} + 5\mathbf{b}$