For Live Classes, Recorded Lectures, Notes & Past Papers visit: www.megalecture.com ## <u>Formula</u> | PHYSICAL QUANTITY | FORMULA | SYMBOLS AND UNITS | |--|---|--| | Equations of motion at constant acceleration | $ \begin{aligned} \overline{v} &= \frac{v+u}{2} \\ s &= \left(\frac{v+u}{2}\right)t \\ v &= u+at \\ s &= ut + \frac{1}{2}at^2 \\ v^2 &= u^2 + 2as \end{aligned} $ | v = average speed, m/s s = displacement, m v = final velocity, m/s u = initial velocity, m/s a = acceleration, m/s ² t = time, s | | Density | $ \rho = \frac{m}{\nu} $ | ρ = density, kg/m ³ m = mass, kg v = volume, m ³ | | Weight | W = mg | W = weight, N
m = mass, kg
g = acceleration due to gravity, m/s ² or
N/kg | | Force | F = ma | F = force, N
m = mass, kg
a = acceleration, m/s ² | | Moment of a force about a point | au = Fd | τ = moment of a force, Nm F = force, N d = perpendicular distance from pivot to the line of action of the force, m | | Object in equilibrium | sum of clockwise moments = sum of anti-clockwise moments about the same pivot sum of upward forces = sum of downward forces | | | Work done | W = Fd | W = work done, J F = force, N d = displacement, m | | Kinetic energy | $K.E. = \frac{1}{2}mv^2$ | K.E. = kinetic energy, J m = mass, kg v = speed, m/s | | Gravitational potential enery | P.E. = mgh | P.E. = potential energy, J
m = mass, kg
g = acceleration due to gravity, m/s ² | ## For Live Classes, Recorded Lectures, Notes & Past Papers visit: www.megalecture.com | | | h = height of an object measured from a reference point | |--|--|--| | Efficiency | $E = \frac{\text{useful energy converted}}{\text{total input energy}} \times 100 \%$ | | | | = output power x 100 % | | | Power | $P = \frac{W}{t} = \frac{E}{t} = \frac{Q}{t}$ | P = Power, W W = Work done or energy transferred, or t = time, s E = energy transferred/used, J Q = thermal energy transferred, J | | Pressure | $P = \frac{F}{A}$ | P = pressure, Pa or Nm ⁻²
F = normal force, N
A = area, m ² | | Liquid pressure | $P = h \rho g$ | P = pressure at depth h , Pa or N/m ²
$\rho =$ density, kg/m ³
g = acceleration due to gravity, m/s ² | | Boyle's Law | $P_1V_1 = P_2V_2$ | P₁ = pressure of gas at state 1, Pa or cm Hg or atm P₂ = pressure of gas at state 2, Pa or cm Hg or atm V₁ = volume of a gas at state 1, m³ or cm³ V₂ = volume of a gas at state 1, m³ or cm³ | | Specific heat capacity | $Q = mc\theta$ | Q = heat absorbed/released due to change of temperature, J m = mass, kg c = specific heat capacity, J/(kgK) θ = change in temperature, K | | Specific latent heat of vaporization or fusion | Q = ml | Q = heat absorbed/released due to
change of state, J
m = mass, kg
l = specific latent heat of fusion or
vaporization, J/kg | | Wave equation | $v = f\lambda$ $f = \frac{1}{T}$ | v = wave speed, m/s
f = frequency, Hz
λ = wavelength, m | | | | T = period, s | ## For Live Classes, Recorded Lectures, Notes & Past Papers visit: www.megalecture.com | Refractive index | $n = \frac{\sin i}{\sin r}$ $n = \frac{c}{v}$ | n = refractive index i = angle in air/vacuum r = angle in medium c = speed of light in vacuum, m/s | |----------------------|---|---| | Critical angle | $\sin \hat{c} = \frac{1}{n}$ | v = speed of light in medium, m/s \hat{c} = critical angle | | Amount of charge | Q = It | Q = charge, C | | Ohm's Law | V = IR | t = time, sV = potential difference across two points, V | | | | I = current, A | | Potential | $V = \frac{W}{Q}$ | R = resistance, Ω
W = work done between two points, J | | Emf | $\xi = \frac{\text{total work done}}{Q}$ | $\xi = \text{emf, V}$ | | Electrical power | P = VI | P = power, W | | Electrical energy | $E = VIt = I^2 R = \frac{V^2}{R}t$ | E = electrical energy, J | | Transformer equation | $\frac{N_p}{N_s} = \frac{V_p}{V_s} = \frac{I_s}{I_p}$ | N_p = number of turns in the primary coi
N_s = number of turns in the secondary | | | | coil V_p = voltage across primary coil, V V_s = voltage across secondary coil, V I_p = current in primary coil, A |