For Live Classes, Recorded Lectures, Notes & Past Papers visit: www.megalecture.com

<u>Formula</u>

PHYSICAL QUANTITY	FORMULA	SYMBOLS AND UNITS
Equations of motion at constant acceleration	$ \begin{aligned} \overline{v} &= \frac{v+u}{2} \\ s &= \left(\frac{v+u}{2}\right)t \\ v &= u+at \\ s &= ut + \frac{1}{2}at^2 \\ v^2 &= u^2 + 2as \end{aligned} $	v = average speed, m/s s = displacement, m v = final velocity, m/s u = initial velocity, m/s a = acceleration, m/s ² t = time, s
Density	$ \rho = \frac{m}{\nu} $	ρ = density, kg/m ³ m = mass, kg v = volume, m ³
Weight	W = mg	W = weight, N m = mass, kg g = acceleration due to gravity, m/s ² or N/kg
Force	F = ma	F = force, N m = mass, kg a = acceleration, m/s ²
Moment of a force about a point	au = Fd	 τ = moment of a force, Nm F = force, N d = perpendicular distance from pivot to the line of action of the force, m
Object in equilibrium	 sum of clockwise moments = sum of anti-clockwise moments about the same pivot sum of upward forces = sum of downward forces 	
Work done	W = Fd	W = work done, J F = force, N d = displacement, m
Kinetic energy	$K.E. = \frac{1}{2}mv^2$	K.E. = kinetic energy, J m = mass, kg v = speed, m/s
Gravitational potential enery	P.E. = mgh	P.E. = potential energy, J m = mass, kg g = acceleration due to gravity, m/s ²

For Live Classes, Recorded Lectures, Notes & Past Papers visit: www.megalecture.com

		h = height of an object measured from a reference point
Efficiency	$E = \frac{\text{useful energy converted}}{\text{total input energy}} \times 100 \%$	
	= output power x 100 %	
Power	$P = \frac{W}{t} = \frac{E}{t} = \frac{Q}{t}$	P = Power, W W = Work done or energy transferred, or t = time, s E = energy transferred/used, J Q = thermal energy transferred, J
Pressure	$P = \frac{F}{A}$	P = pressure, Pa or Nm ⁻² F = normal force, N A = area, m ²
Liquid pressure	$P = h \rho g$	P = pressure at depth h , Pa or N/m ² $\rho =$ density, kg/m ³ g = acceleration due to gravity, m/s ²
Boyle's Law	$P_1V_1 = P_2V_2$	 P₁ = pressure of gas at state 1, Pa or cm Hg or atm P₂ = pressure of gas at state 2, Pa or cm Hg or atm V₁ = volume of a gas at state 1, m³ or cm³ V₂ = volume of a gas at state 1, m³ or cm³
Specific heat capacity	$Q = mc\theta$	 Q = heat absorbed/released due to change of temperature, J m = mass, kg c = specific heat capacity, J/(kgK) θ = change in temperature, K
Specific latent heat of vaporization or fusion	Q = ml	Q = heat absorbed/released due to change of state, J m = mass, kg l = specific latent heat of fusion or vaporization, J/kg
Wave equation	$v = f\lambda$ $f = \frac{1}{T}$	v = wave speed, m/s f = frequency, Hz λ = wavelength, m
		T = period, s

For Live Classes, Recorded Lectures, Notes & Past Papers visit: www.megalecture.com

Refractive index	$n = \frac{\sin i}{\sin r}$ $n = \frac{c}{v}$	 n = refractive index i = angle in air/vacuum r = angle in medium c = speed of light in vacuum, m/s
Critical angle	$\sin \hat{c} = \frac{1}{n}$	v = speed of light in medium, m/s \hat{c} = critical angle
Amount of charge	Q = It	Q = charge, C
Ohm's Law	V = IR	t = time, sV = potential difference across two points, V
		I = current, A
Potential	$V = \frac{W}{Q}$	R = resistance, Ω W = work done between two points, J
Emf	$\xi = \frac{\text{total work done}}{Q}$	$\xi = \text{emf, V}$
Electrical power	P = VI	P = power, W
Electrical energy	$E = VIt = I^2 R = \frac{V^2}{R}t$	E = electrical energy, J
Transformer equation	$\frac{N_p}{N_s} = \frac{V_p}{V_s} = \frac{I_s}{I_p}$	N_p = number of turns in the primary coi N_s = number of turns in the secondary
		coil V_p = voltage across primary coil, V V_s = voltage across secondary coil, V I_p = current in primary coil, A