ADD MATHS WORKSHEET #1

- 1. Find the minimum value of $(x-2)^2 2$ and the corresponding value of x. Sketch the graph of $y = |(x-2)^2 2|$ for $0 \le x \le 4$. (N99/P1/17b)
- 2. Draw the graph of $y = 3 + |x^2 5x + 4|$, for $0 \le x \le 5$, using a scale of 2 cm to 1 unit along each axis. Use your graph to find the set of values of x for which $y \le 5$. (N01/P1/13b)
- 3. The function f is defined by f: $x \mapsto |x^2 8x + 7|$ for the domain $3 \le x \le 8$.
 - (i) By first considering the stationary value of the function $x \mapsto x^2 8x + 7$, show that the graph of y = f(x) has a stationary point at x = 4 and determine the nature of this stationary point.
 - (ii) Sketch the graph of y = f(x).
 - (iii) Find the range of f.

 (\Box) 1

Urheberrechtlich geschütztes Mat-

The function g is defined by g: $x \mapsto |x^2 - 8x + 7|$ for the domain $3 \le x \le k$.

(iv) Determine the largest value of k for which g-lexists.

(N2004/P2/10)

- 4. The function f is defined for the domain $-3 \le x \le 3$ by $f(x) = 9\left(x \frac{1}{3}\right)^2 11$.
 - (i) Find the range of f.
 - (ii) State the coordinates and nature of the turning point of
 - (a) the curve y = f(x),
 - (b) the curve y = |f(x)|.

(N2006/P1/7)

For Live Classes, Recorded Lectures, Notes & Past Papers visit: www.megalecture.com

- 1. Find the range of values of x for which $3x^2 5x + 4 > 3 x^2$. (N97/P1/4)
- 2. Find the range of values of x for which $x(10 x) \ge 24$. (N98/P1/3a)
- 3. Find the range of values of x for which $3(x + 1)^2 < 16x$. (N99/P1/2)
- 4. Find the range of values of x for which (2x+1)(4-x) > 4. (N2000/P1/3b)
- 5. Given that $f(x) = 2x^2 5x 7$,
 - find the value of a, of b and of c for which f(x) = a(x − b)² − c,
 - (ii) state the minimum value of f(x),
 - (iii) sketch the graph of y = |f(x)| for $-2 \le x \le 4.5$, indicating on your graph the coordinates of the stationary point and of the points where the graph meets the coordinate axes,
 - (iv) calculate the values of x for which |f(x)| = 7, giving your answers to 2 decimal places where appropriate. (N2000/P1/17)
- 6. Find the range of values of x for which x(2x + 5) > 12. (N01/P1/7a)
- 7. Find the x-coordinate of the point on the line y = 5 2x where xy is a maximum.

(N01/P1/15a)

- 6. Find the values of m for which the line y = mx 9 is a tangent to the curve $x^2 = 4y$.

 (N2002/P1/2)
- 7. Find the values of k for which the line x + 3y = k and the curve $y^2 = 2x + 3$ do not intersect. (N2003/P1/1)
- 8. Find the values of k for which the line y = x + 2 meets the curve $y^2 + (x + k)^2 = 2$. (N2004/P2/4)
- 9. Find the value of m for which the line y = mx 3 is a tangent to the curve $y = x + \frac{1}{x}$ and find the x-coordinate of the point at which this tangent touches the curve. (N2006/P2/7a)
- 10. The equation of a straight line is y = 5 + kx, where k is a constant. Find the values of k for which this straight line is a tangent to the curve $y^2 = 4y + x + 1$. (SP08/P1/4)

For Live Classes, Recorded Lectures, Notes & Past Papers visit: www.megalecture.com

8. EITHER

Functions f and g are defined for $x \in \mathbb{R}$ by

$$f: x \mapsto 3x - 2, x \neq \frac{4}{3},$$

 $g: x \mapsto \frac{4}{2-x}, x \neq 2.$

- (i) Solve the equation gf(x) = 2.
- (ii) Determine the number of real roots of the equation f(x) = g(x).
- (iii) Express f-1 and g-1 in terms of x.
- (iv) Sketch, on a single diagram, the graphs of y = f(x) and $y = f^{-1}(x)$, stating the coordinates of the point of intersection of the two graphs.

OR

(i) Find the value of a and of b for which $1 - x^2 + 6x$ can be expressed in the form $a - (x + b)^2$.

A function f is defined by $f: x \mapsto 1 - x^2 + 6x$ for the domain $x \ge 4$.

- (ii) Explain why f has an inverse.
- (iii) Find an expression for f⁻¹ in terms of x.

A function g is defined by $g: x \mapsto 1 - x^2 + 6x$ for the domain $2 \le x \le 7$.

(iv) Find the range of g.

(v) Sketch the graph of
$$y = |g(x)|$$
 for $2 \le x \le 7$.

(N2003/P2/12)

10. The functions f and g are defined for $x \in \mathbb{R}$ by $f: x \mapsto x^3$, $g: x \mapsto x + 2$.

(i) $x \mapsto x^3 + 2$.

(ii)
$$x \mapsto x^3 - 2$$
.

(iii)
$$x \mapsto (x+2)^{\frac{x}{3}}$$
. (N2006/P2/1)