Worksheet: HESS LAW

Questions will be solved by the help of HESS LAW formulas

For Formation:

 $\Delta H_r = \sum \Delta H_f$ (Products) - $\sum \Delta H_f$ (Reactants)

For Combustion:

 $\Delta H_r = \sum \Delta H_c$ (Reactants) - $\sum \Delta H_c$ (Products)

3 Ethanol is increasingly being used as a fuel for cars.

The standard enthalpy change of formation of carbon dioxide is -393 kmol⁻¹

The standard enthalpy change of formation of water is -286 kJ mol⁻¹. The standard enthalpy change of formation of ethanol is -277 kJ mol⁻¹.

What is the standard enthalpy change of combustion of ethano?

- A -1921 kJ mol⁻¹
- B -1367 kJ mol⁻¹
- C -956 kJ mol⁻¹
- D -402 kJ mol⁻¹

w/14/qp11

5 Hydrogen sulfide, H₂S, is released from volcanoes. It reacts with oxygen in the air to form sulfur dioxide.

$$2H_2S(g) + 3O_2(g) \rightarrow 2H_2O(I) + 2SO_2(g)$$

$$\Delta H_f^{\oplus}[H_2S(g)] = -21 \text{ kJ mol}^{-1}$$

$$\Delta H_{\rm f}^{\oplus} [H_2 O(I)] = -286 \,{\rm kJ \, mol}^{-1}$$

$$\Delta H_{\rm f}^{\rm e} [{\rm SO}_2(g)] = -297 \,{\rm kJ \, mol}^{-1}$$

What is the standard enthalpy change of this reaction?

- A -1208 kJ mol⁻¹
- B -1124 kJ mol⁻¹
- C -562 kJ mol⁻¹
- **D** -541 kJ mol⁻¹

w/14/qp13

3 The enthalpy change of formation of carbon dioxide is -394 kJ mol⁻¹. The enthalpy change of formation of water is -286 kJ mol⁻¹. The enthalpy change of formation of methane is -74 kJ mol⁻¹.

What is the enthalpy change of combustion of methane?

- A -892 kJ mol⁻¹
- B -606 kJ mol⁻¹
- C +606kJ mol-1
- D +892 kJ mol⁻¹

s/14/qp12

The enthalpy change of formation of Mn(NO₃)₂(s) is -696 kJ mol⁻¹. The enthalpy change of formation of MnO₂(s) is -520 kJ mol⁻¹. The enthalpy change of formation of NO₂(g) is +33 kJ mol⁻¹.

On heating, Mn(NO₃)₂ decomposes into MnO₂ and NO₂.

$$Mn(NO_3)_2(s) \rightarrow MnO_2(s) + 2NO_2(g)$$

What is the value of the standard enthalpy change of this reaction?

- A –242 kJ mol⁻¹
- B -209 kJ mol⁻¹
- C +209 kJ mol⁻¹
- D +242 kJ mol⁻¹

s/14/qp13

12 Propanone has molecular formula C₃H₆O.

The enthalpy change of combustion of hydrogen is -286 kJ mol⁻¹.

The enthalpy change of combustion of carbon is -394 kJ mol⁻¹.

The enthalpy change of formation of propanone is -254 kJ mol⁻¹.

Using this information, what is the enthalpy change of combustion of propanone?

- A -2644 kJ mol⁻¹
- B -2294 kJ mol⁻¹
- C -1786 kJ mol⁻¹
- D -426 kJ mol⁻¹

s/13/qp12

10 A student calculated the standard enthalpy change of formation of ethane, C₂H₆, using a method based on standard enthalpy changes of combustion.

He used correct values for the standard enthalpy change of combustion of ethane $(-1560 \, \text{kJ mol}^{-1})$ and hydrogen $(-286 \, \text{kJ mol}^{-1})$ but he used an incorrect value for the standard enthalpy change of combustion of carbon. He then performed his calculation correctly. His final answer was $-158 \, \text{kJ mol}^{-1}$.

What did he use for the standard enthalpy change of combustion of carbon?

- A -1432 kJ mol⁻¹
- B -860 kJ mol⁻¹
- C -430 kJ mol⁻¹
- **D** -272 kJ mol⁻¹

w/12/qp11

8 Enthalpy changes of combustion can be used to determine enthalpy changes of formation. The following equation represents the enthalpy change of formation of butane.

$$4C(s) + 5H_2(g) \rightarrow C_4H_{10}(g)$$

By using the following standard enthalpy of combustion data, what is the value of the standard enthalpy change of formation, ΔH_f° , for this reaction?

compound	ΔH ^o _c /kJ mol ⁻¹
carbon	-394
hydrogen	-286
butane	-2877

- A -5883 kJ mol⁻¹
- B -129 kJ mol⁻¹
- C +129 kJ mol⁻¹
- D +2197 kJ mol⁻¹

w/10/qp11

6 The first stage in the industrial production of nitric acid from ammonia can be represented by the following equation.

$$4NH_3(g) + 5O_2(g) \rightleftharpoons 4NO(g) + 6H_2O(g)$$

Using the following standard enthalpy change of formation data, what is the value of the standard enthalpy change, ΔH^{e} , for this reaction?

compound	ΔH _f ^e /kJmoΓ ¹	
NH ₃ (g)	-46.1	\
NO(g)	+90.3	<i>y</i> >
H₂O(g)	-241.8	

- A +905.2kJ mol⁻¹
- B -105.4 kJ mol⁻¹
- C -905.2 kJ mol⁻¹
- **D** −1274.0 kJ mol⁻¹

w/09/qp11

6 Given

$$S(s) + O_2(g) \rightarrow SO_2(g)$$

$$\Delta H_{\rm f}^{0} = -297 \,\text{kJ} \,\text{mol}^{-1}$$

$$S(s) + 1\frac{1}{2}O_2(g) \rightarrow SO_3(g)$$

 $\Delta H_{\rm f}^{\Theta} = -395 \,\text{kJ} \,\text{mol}^{-1}$

what is the enthalpy change of reaction, ΔH^{Φ} , of $2SO_2(g) + O_2(g) \rightarrow 2SO_3(g)$?

A -196 kJ mol⁻¹ **B**

w/05/qp1

11 The 'flash' produced by nineteenth century photographers to take indoor photographs was obtained from the following reaction.

$$3Mg + KClO_3 \longrightarrow 3MgO + KCl$$

The standard enthalpy changes of formation are given below.

	$\Delta H_{\rm f}^{\rm e}$ / kJ mol ⁻¹
MgO	-602
KCI	-437
KClO ₃	-391

What is the standard enthalpy change of the 'flash' reaction?

$$A = -3(-602) + (-437) - (-391)$$

D
$$(-602) + 3(-437) - 3(-391)$$

w/03/qp1

12 Red lead oxide, Pb₃O₄, is used in metal priming paints. It can be made by heating PbO in air.

$$6PbO(s) + O_2(g) \rightarrow 2Pb_3O_4(s)$$

Which two values are needed to calculate the enthalpy change for this reaction?

- A enthalpy change of atomisation of O2 and enthalpy change of formation of Pb3O4
- $\,B\,\,$ enthalpy change of formation of O_2 and enthalpy change of formation of Pb_3O_4
- C enthalpy change of formation of PbO and enthalpy change of atomisation of O₂
- D enthalpy change of formation of PbO and enthalpy change of formation of Pb₃O₄

s/12/qp12

7 Propanone has the molecular formula C₃H₆O.

The enthalpy change of combustion of hydrogen is -286 kJ mol⁻¹.

The enthalpy change of combustion of carbon is -394 kJ mol⁻¹.

The enthalpy change of combustion of propanone is -1786 kJ mol⁻¹.

Using this information, what is the enthalpy change of formation of propanone?

- **A** −1106 kJ mol⁻¹
- **B** -540 kJ mol⁻¹
- C -254 kJ mol⁻¹
- **D** +1106 kJ mol⁻¹

s/12/qp11

7 Titanium occurs naturally as the mineral rutile, TiO₂. One possible method of extraction of titanium is to reduce the rutile by heating with carbon.

$$TiO_2(s) + 2C(s) \rightarrow Ti(s) + 2CO(g)$$

The standard enthalpy changes of formation of $TiO_2(s)$ and CO(g) are -940 kJ mol^{-1} and -110 kJ mol^{-1} respectively.

What is the standard enthalpy change of this reaction?

- A -830 kJ mol⁻¹
- B -720 kJ mol⁻¹
- C +720 kJ mol⁻¹
- D +830 kJ mol⁻¹

s/11/qp12

8 Hydrogen peroxide slowly decomposes into water and oxygen. The enthalpy change of reaction can be calculated using standard enthalpies of formation.

$$\Delta H_{f}^{e}$$
(hydrogen peroxide(I))= -187.8 kJ mol⁻¹

$$\Delta H_f^{\text{e}}(\text{water(I)}) = -285.8 \text{ kJ mol}^{-1}$$

Using a Hess cycle, what is the enthalpy change of reaction for this decomposition?

$$2H_2O_2(I) \rightarrow 2H_2O(I) + O_2(g)$$

- A +98 kJ mol⁻¹
- **B** -98 kJ mol⁻¹
- C -196 kJ mol⁻¹
- **D** -947.2 kJ mol⁻¹

s/09/qp1

10 Titanium occurs naturally as the mineral rutile, TiO₂. One possible method of extraction of titanium is to reduce the rutile by heating with carbon.

$$TiO_2(s) + 2C(s) \rightarrow Ti(s) + 2CO(g)$$

The standard enthalpy changes of formation of $TiO_2(s)$ and CO(g) are -940 kJ mol^{-1} and -110 kJ mol^{-1} respectively.

What is the standard enthalpy change of this reaction?

- A -830 kJ mol⁻¹
- **B** -720 kJ mol⁻¹
- C +720 kJ mol⁻¹
- D +830 kJ mol⁻¹

s/08/qp1

8 The standard enthalpy changes of formation of iron(N) oxide, FeO(s), and aluminium oxide, $Al_2O_3(s)$, are $-266 \, \text{kJ} \, \text{mol}^{-1}$ and $-1676 \, \text{kJ} \, \text{mol}^{-1}$ respectively.

What is the enthalpy change under standard conditions for the following reaction?

$$3FeO(s) + 2Al(s) \rightarrow 3Fe(s) + Al_2O_3(s)$$

- A +878kJ
- **B** -878 kJ
- C >-1942kJ
- D -2474 kJ

s/04/qp1