Chemical Energetics: Bond Energies

32 Use of the Data Booklet is relevant to this question.

The bond energy of the Br-O bond is 235 kJ mol⁻¹.

Which reactions are exothermic?

1 OH• + HBr
$$\rightarrow$$
 H₂ + BrO•

2 OH• + HBr
$$\rightarrow$$
 H₂O + Br•

3
$$H \bullet + HBr \rightarrow H_2 + Br \bullet$$

w/14/qp11

Which stage in the free radical substitution of ethane by chlorine will have the lowest activation energy?

A
$$Cl_2 \rightarrow 2Cl_{\bullet}$$

$$\textbf{B} \quad \text{C} \textit{l} \bullet \ + \ \text{C}_2 \text{H}_6 \ \rightarrow \ \text{C}_2 \text{H}_5 \bullet \ + \ \text{HC} \textit{l}$$

C
$$C_2H_5 \bullet + Cl_2 \rightarrow C_2H_5Cl + Cl \bullet$$

D
$$Cl \cdot + C_2H_5 \cdot \rightarrow C_2H_5Cl$$

w/13/qp13

Ethyne, C₂H₂, completely combusts, as shown in the equation.

$$H-C\equiv C-H + 2\frac{1}{2}O=O \rightarrow H_2O + 2CO_2$$

Using the average bond enthalpies in the table, what is the enthalpy change of combustion of ethyne?

bond	average bond enthalpy/kJ mol ⁻¹
с—н	410
c≡c	840
0=0	496
c=o	740
о—н	460
c-o	360

A -980 kJmol^{-1} **B** -540 kJmol^{-1} **C** $+540 \text{ kJmol}^{-1}$ **D** $+980 \text{ kJmol}^{-1}$

w/12/qp13

Whatsapp: +92 323 509 4443

- 11 Which process could be used to calculate the bond energy for the covalent bond X-Y by dividing its ΔH by n?
 - A $XY_n(g) \rightarrow X(g) + nY(g)$
 - B $2XY_n(g) \rightarrow 2XY_{n-1}(g) + Y_2(g)$
 - C $Y(g) + XY_{n-1}(g) \rightarrow XY_n(g)$
 - $D \quad nXY(g) \to nX(g) + \frac{n}{2}Y_2(g)$

w/12/qp11

4 Use of the Data Booklet is relevant to this question.

A reaction which causes the presence of oxides of nitrogen in car exhausts is the formation of NO.

$$N_2 + O_2 \rightarrow 2NQ$$
 $\Delta H = 4180 \text{ kJ mol}^{-1}$

What is the bond energy in kJ mol⁻¹ of the bond between the atoms in NO?

- A 655
- **B** 835
- C 1310
- **D** 1670

w/12/qp11

22 Use of the Data Booklet is relevant to this question.

Which bond in the structure below has the lowest bond energy?

w/11/qp12

6 The standard enthalpy change for the reaction

$$2NF_3(g) \rightarrow 2N(g) + 6F(g)$$
 is $\Delta H^{\circ} = +1668 \text{ kJ}$

What is the bond energy of the N-F bond?

- A -556 kJ mol⁻¹
- B -278 kJ mol⁻¹
- C +278 kJ mol⁻¹
- D +556 kJ mol⁻¹

w/11/qp11

4 Methanol may be prepared by the reaction between carbon monoxide and hydrogen.

$$CO(g) + 2H_2(g) \rightarrow CH_3OH(g)$$

The relevant average bond energies are given below.

E(C=0) 1077 kJ mol⁻¹

E(C-O) 360 kJ mol⁻¹

E(C-H) 410 kJ mol⁻¹

E(H-H) 436 kJ mol⁻¹

E(O-H) 460 kJ mol⁻¹

What is the enthalpy change of this reaction?

- **A** −537 kJ mol⁻¹
- **B** -101 kJ mol⁻¹
- C +101 kJ mol⁻¹
- **D** +537 kJ mol⁻¹

w/10/qp12

8 The equation below represents the combination of gaseous atoms of non-metal X and of hydrogen to form gaseous X₂H₆ molecules.

$$2X(g)+6H(g)\rightarrow X_2H_6(g) \qquad \Delta H=-2775\,kJ\,mol^{-1}$$

The bond energy of an X-H bond is 395kJ mol⁻¹.

What is the bond energy of an X–X bond?

- **A** −405.0 kJ mol⁻¹
- **B** −202.5kJ mol⁻¹
- C +202.5 kJ mol⁻¹
- **D** +405.0 kJ mol⁻¹

s/11/qp11

4 Some bond energy values are listed below.

bond	bond energy/kJmol ⁻¹
C-H	410
C-C1	340
C1-C1	244
Br–Br	193

These bond energy values relate to the following four reactions

- P $Br_2 \rightarrow 2Br$
- Q $2Cl \rightarrow Cl_2$
- R $CH_3 + Cl \rightarrow CH_3Cl$
- S $CH_4 \rightarrow CH_3 + H$

What is the order of enthalpy changes of these reactions from most negative to most positive?

- $A \quad P \rightarrow Q \rightarrow R \rightarrow S$
- $\textbf{B} \quad \mathsf{Q} \to \mathsf{R} \to \mathsf{S} \to \mathsf{P}$
- $\boldsymbol{C} \quad R \to Q \to P \to S$
- **D** $S \rightarrow P \rightarrow Q \rightarrow R$

s/10/qp11