

AS LEVEL CHEMISTRY

TOPIC 2 – AMOUNT OF SUBSTANCE ASSESSED HOMEWORK

Answer all questions

Max 80 marks

	CO.
Name	
Mark	/80% Grade
	00
	Co.
	· in

1. Hydrogen peroxide is sold commercially as an aqueous solution containing approximately 60 g dm ⁻³ of hydrogen peroxide.			
	(a)	Use data from the Periodic Table to calculate the M_r of hydrogen peroxide. Give your answer to the appropriate precision.	
		(1)	
	(b)	Calculate the concentration, in mol dm ⁻³ , of a solution containing 60.0 g dm ⁻³ of hydrogen peroxide.	
		(1)	
	(c)	The concentration of hydrogen peroxide in a hair bleach is 0.050 mol dm ⁻³ . Use your answer from (b) to calculate the dilution factor needed to make the commercial hydrogen peroxide solution suitable for use in this hair bleach. Show your working.	
		(2) (Total 4 marks)	
2.	The wate	emist was asked to prepare a standard solution of sodium carbonate. chemist dissolved an accurately known mass of sodium carbonate in a small amount of r in a conical flask. The chemist then poured the solution into a 250 cm³ graduated flask made the solution up to the mark. Suggest one improvement to the chemist's procedure.	
		(Total 1 mark)	

∠ınc	forms many different salts including zinc sulfate, zinc chloride and zinc fluoride.	
(a)	People who have a zinc deficiency can take hydrated zinc sulfate (ZnSO ₄ .xH ₂ O) as a dietary supplement.	
	A student heated 4.38 g of hydrated zinc sulfate and obtained 2.46 g of anhydrous zinc sulfate.	
	Use these data to calculate the value of the integer <i>x</i> in ZnSO ₄ . <i>x</i> H ₂ O Show your working.	
	<i>Q</i> , *	(3)
(b)	Zinc chloride can be prepared in the laboratory by the leaction between zinc oxide and hydrochloric acid. The equation for the reaction is	
	ZnO + 2HCl ZnCl ₂ + H ₂ O	
	A 0.0830 mol sample of pure zinc oxide was added to 100 cm³ of 1.20 mol dm¬³ hydrochloric acid.	
	Calculate the maximum mass of aritydrous zinc chloride that could be obtained from the products of this reaction.	
	. 4	
		(4)

Zinc chloride can also be prepared in the laboratory by the reaction between zinc and

(c)

5.	Read the following instructions that describe how to make up a standard solution of a solid in a
	volumetric flask.
	Answer the questions which follow.

'Take a clean 250 cm³ volumetric flask. Use the balance provided and a clean, dry container, to weigh out the amount of solid required. Tip the solid into a clean, dry 250 cm³ beaker and add about 100 cm³ of distilled water. Use a stirring rod to help the solid dissolve, carefully breaking up any lumps of solid with the rod. When the solid has dissolved, pour the solution into the flask

(a)	Suggest three further instructions that would improve the overall technique in this account.	
	1	
	2	
	•	
	3	
	(3))
(b)	In a series of titrations using the solution made up in part (a), a student obtained the following titres (all in cm³). Rough 1 2 25.7 25.20 25.35 State what this student must do in order to obtain an accurate average titre in this experiment.	
	(2) (Total 5 marks)	

sodi	ulate the volume of water that should be added to 10.0 cm³ of a 12.0 mol dm³ solution of um hydroxide to make a 0.250 mol dm³ solution. Show your working.	
	(Total 2 r	nai
	nonia is used to make nitric acid (HNO ₃) by the Ostwald Process. e reactions occur in this process.	
	Reaction 1 $4NH_3(g) + 5O_2(g) \longrightarrow 4NO(g) + 6H_2O(g)$	
	Reaction 22NO(g) + $O_2(g)$ \longrightarrow 2NO ₂ (g)	
	Reaction 3 3NO ₂ (g) + H ₂ O(I) \longrightarrow 2HNO ₃ (aq) + NO(g)	
(a)	In one production run, the gases formed in Reaction 1 occupied a total volume of 4.31 $m^{\mbox{\tiny 3}}$ at 25 °C and 100 kPa.	
	Calculate the amount, in moles, of NO produced. Give your answer to 3 significant figures. (The gas constant $R = 8.31 \text{ J K}^{-1} \text{ mol}^{-1}$)	
	In another production run, 3.00 kg of ammonia gas were used in Reaction 1 and all of the NO gas produced was used to make NO ₂ gas in Reaction 2.	
(b)	NO gas produced was used to make NO2 gas in Neaction 2.	
(b)	(i) Calculate the amount, in moles, of ammonia in 3.00 kg.	
(b)		
(b)		
(b)		

	(ii)	Calculate the mass of NO ₂ formed from 3.00 kg of ammonia in Reaction 2 assuming an 80.0% yield. Give your answer in kilograms. (If you have been unable to calculate an answer for part (b)(i), you may assume a value of 163 mol. This is not the correct answer.)	
			(3)
(c)	Calc	sider Reaction 3 in this process. $3NO_2(g) + H_2O(I) \longrightarrow 2HNO_3(aq) + NO(g)$ culate the concentration of nitric acid produced when 0.543 mol of NO_2 is reacted with er and the solution is made up to 250 cm ³ .	
		(Total 11 ma	(2) arks)

(a)		Calcium phosphate reacts with aqueous nitric acid to produce phosphoric acid and calcium nitrate as shown in the equation.	
		$Ca_3(PO_4)_2 + 6HNO_3 \longrightarrow 2H_3PO_4 + 3Ca(NO_3)_2$	
	(i)	A 7.26 g sample of calcium phosphate reacted completely when added to an excess	
	(1)	of aqueous nitric acid to form 38.0 cm ³ of solution.	
		Calculate the concentration, in mol dm ⁻³ , of phosphoric acid in this solution. Give your answer to 3 significant figures.	
			(5)
	(ii)	Calculate the percentage atom economy for the formation of calcium nitrate in this reaction.	
		Give your answer to 1 decimal place.	
			(2)
(b)		e an equation to show the reaction between calcium hydroxide and phosphoric acid to duce calcium phosphate and water.	
			(4)
			(1)

8.

(4) arks)

9.	(a)	An unknown metal carbonate reacts with hydrochloric acid according to the following
		equation.

$$M_2CO_3(aq) + 2HCI(aq)$$
 $2MCI(aq) + CO_2(g) + H_2O(I)$

A 3.44 g sample of M_2CO_3 was dissolved in distilled water to make 250 cm³ of solution. A 25.0 cm³ portion of this solution required 33.2 cm³ of 0.150 mol dm⁻³ hydrochloric acid for complete reaction.

(i)	Calculate the amount, in moles, of HCl in 33.2 cm³ of 0.150 mol dm⁻³ hydrochloric acid. Give your answer to 3 significant figures.	
		(1)
(ii)	Calculate the amount, in moles, of M_2CO_3 that reacted with this amount of HCI. Give your answer to 3 significant figures.	
		(1)
(iii)	Calculate the amount, in moles, of M_2CO_3 in the 3.44 g sample. Give your answer to 3 significant figures.	
		(1)
(iv)	Calculate the relative formula mass, M_1 , of M_2CO_3 Give your answer to 1 decimal place.	
		(1)
(v)	Hence determine the relative atomic mass, A_{r} , of the metal M and deduce its identity.	
	<i>A</i> _r of M	
	Identity of M	

(2)

	220 m^3 at a pressure of 100 kPa. culate the temperature of this CO_2 and state the units. e gas constant $R = 8.31 \text{ J K}^{-1} \text{ mol}^{-1}$)	
flask	gest one possible danger when a metal carbonate is reacted with an acid in a sealed k.	
	<i>a</i> •	
	. ~	
	different experiment, 6.27 g of magnesium carbonate were added to an excess of uric acid. The following reaction occurred.	
	MgCO ₃ + H ₂ SO ₄ MgSC ₂ + CO ₂ + H ₂ O	
(i)		
(i)	MgCO ₃ + H ₂ SO ₄ MgSC ₂ + CO ₂ + H ₂ O	
(i)	MgCO ₃ + H ₂ SO ₄ MgSC ₂ + CO ₂ + H ₂ O	
(i)	MgCO ₃ + H ₂ SO ₄ MgSO ₂ + CO ₂ + H ₂ O Calculate the amount, in moles, of MgCO ₃ in 6.27 g of magnesium carbonate.	
(i) (ii)	MgCO ₃ + H ₂ SO ₄ MgSC ₂ + CO ₂ + H ₂ O	
	MgCO ₃ + H ₂ SO ₄ MgSO ₂ + CO ₂ + H ₂ O Calculate the amount, in moles, of MgCO ₃ in 6.27 g of magnesium carbonate.	
	MgCO ₃ + H ₂ SO ₄ MgSO ₂ + CO ₂ + H ₂ O Calculate the amount, in moles, of MgCO ₃ in 6.27 g of magnesium carbonate.	
	MgCO ₃ + H ₂ SO ₄ MgSO ₂ + CO ₂ + H ₂ O Calculate the amount, in moles, of MgCO ₃ in 6.27 g of magnesium carbonate.	
	MgCO ₃ + H ₂ SO ₄ MgSO ₂ + CO ₂ + H ₂ O Calculate the amount, in moles, of MgCO ₃ in 6.27 g of magnesium carbonate.	

	3Pb(s)	+	8HNO₃(aq)	>	$3Pb(NO_3)_2(aq)$	+	2NO(g)	+	4H₂O(I)
(a)	In an expe solution of			ple of le	ad reacted comple	etely v	with a 2.00) mo	l dm ^{.₃}
			lume, in dm³, of er to 3 significan		d required for com	plete	reaction.		
(b)	638 cm³ at Calculate t	101 k he an	eriment, the nitro RPA and 298 K. RPA nount, in moles, RPA nt RPA 1 S.31 J K ⁻¹	of NO ga	noxide gas producas produced.	ced ir	the react	ion c	occupied
						•••••			
								•••	

The metal lead reacts with warm dilute nitric acid to produce lead(II) nitrate, nitrogen monoxide

10.

Whe oxyg	n lead(II) nitrate is heated it decomposes to form lead(II) oxide, nitrogen dioxide and en.
(i)	Balance the following equation that shows this thermal decomposition.
	Pb(NO ₃) ₂ (s)PbO(s) +NO ₂ (g) +O ₂ (g) (1)
(ii)	Suggest one reason why the yield of nitrogen dioxide formed during this reaction is often less than expected.
	(1)
(iii)	Suggest one reason why it is difficult to obtain a pure sample of nitrogen dioxide from this reaction.
	(Total 9 marks)

(c)

11. A brand of fluoride tablets, recommended by a dentist to strengthen the enamel on teeth, contains 2.2×10^{-3} sodium fluoride per tablet. The total mass of fluoride ion present in 100 tablets is

A
$$2.2 \times 10^{-3} \times \frac{19}{42} \times 100$$

B
$$2.2 \times 10^{-3} \times \frac{19}{23} \times 100$$

C
$$2.2 \times 10^{-3} \times \frac{9}{20} \times 100$$

$$D = \frac{100 \times 19}{2.2 \times 10^{-3}}$$

(Total 1 mark)

- **12.** When TiCl₄ is reduced with hydrogen under certain conditions, a new compound is produced which contains 68.9% chlorine by mass. Which one of the following could be the formula of the new compound?
 - A TiH₂Cl₂
 - B TiCI
 - C TiCl₂
 - D TiCl₃

(Total 1 mark)

- **13.** Which one of the following samples of gas, when sealed into a vessel of volume 0.10 m³, is at the highest pressure?
 - A 1.6 g of helium (He) at 100 K
 - B 1.6 g of methane (CH₄) at 100 K
 - f C 1.6 g of oxygen (O₂) at 600 K
 - **D** 1.6 g of sulphur dioxide (SO₂) at 1200 K

(Total 1 mark)

- 14. Which one of the following compounds contains the smallest percentage, by mass, of oxygen?
 - A CH₃OCH₂CH₃
 - B CH₃OCH₂NH₂
 - **c** cos
 - \mathbf{D} $C_4H_9AI(OH)_2$

(Total 1 mark)

A 2.65 g

B 0.0150 m³ at 1000 K and 33.0 kPa

C 1.50 dm3 at 327 °C and 200 kPa

D 1500 cm³ at 300 K and 100 kPa

(Total 1 mark)

16. Use the information below to answer this question.

A saturated solution of magnesium hydroxide, Mg(OH)₂, contains 0.1166 g of Mg(OH)₂ in 10.00 dm³ of solution. In this solution the magnesium hydroxide is fully dissociated into ions.

Which one of the following is the concentration of Mg²⁺(aq) ions in the saturated solution?

A $2.82 \times 10^{-2} \text{ mol dm}^{-3}$

B $2.00 \times 10^{-3} \text{ mol dm}^{-3}$

C $2.82 \times 10^{-3} \text{ mol dm}^{-3}$

D $2.00 \times 10^{-4} \text{ mol dm}^{-3}$

(Total 1 mark)

17. A particular sample of iron ore contains 85% by mass of Fe₂C₃ (*M*= 159.6) and no other iron compound. The maximum mass of iron that could be extracted from 1.0 tonne of this ore is

A 0.59 tonne

B 0.66 tonne

C 0.75 tonne

C 0.85 tonne

(Total 1 mark)

18. Sodium hydrogencarbonate decomposes on heating as shown by the equation below.

2NaHCO₃ Na₂CO₃ + H₂O + CO₂

The volume of carbon dioxide, measured at 298 K and 101 kPa, obtained by heating 0.0500 mol of sodium hydrogencarbonate is

A 613 cm³

B 1226 cm³

C 613 dm³

D 1226 dm³

(Total 1 mark)