

AS LEVEL CHEMISTRY

TOPIC 1 – ATOMIC STRUCTURE AND THE PERIODIC TABLE ASSESSED HOMEWORK

Answer all questions

Max 80 marks

Name	
Mark	/80 Grade
	wind the

1.			occurring sample of the element boron has a relative atomic mass of 10.8. ople, boron exists as two isotopes, ¹⁰ B and ¹¹ B	
		(i)	Calculate the percentage abundance of ¹⁰ B in this naturally occurring sample of boron.	
				(2)
		(ii)	State, in terms of fundamental particles, why the isotopes ¹⁰ B and ¹¹ B have similar chemical reactions.	
			(Total 3 ma	(1) arks)
0	(0)	Ctoto	the meaning of the terms made number of an instance	
2.	(a)	State	the meaning of the term <i>mass number</i> of an isotope.	
		•••••		
				(1)
	(b)		the symbol of the element that has an isotope with a mass number of 68 and has 38 rons in its nucleus.	
				(1)
	(c)		mass spectrometer, the isotopes of an element are separated. measurements for each isotope are recorded on the mass spectrum.	
			State the two measurements that are recorded for each isotope.	
			Measurement 1	
			Measurement 2	(2)
				(-)

	2 ratio of abundance.	
(i)	Calculate the relative atomic mass of R . Give your answer to one decimal place.	
		(3)
(ii)	Identify R.	
		(1)
		()
(iii)	All the isotopes of R react in the same way with concentrated pitric acid.	
	State why isotopes of an element have the same chemical properties.	
	(Total 9 m	(1) arks)
	(Total 9 m	,
	William Control of the Control of th	
	Whith the	

(d)

Define the term relative atomic mass of an element. (a) (2) Element X has a relative atomic mass of 47.9 (b) Identify the block in the Periodic Table to which element **X** belongs and give the electron configuration of an atom of element X. Calculate the number of neutrons in the isotope of **X** which has a mass number 49 (3)

The mass spectrum of element **Z** is shown below. (c)

> Use this spectrum to calculate the relative atomic mass of **Z**, giving your answer to one decimal place.

Identify element Z.

• • • • • • • • • • • • • • • • • • • •	 	 	

(d)	State how vaporised atoms of Z are converted into Z ⁺ ions in a mass spectrometer.
	State and explain which of the \mathbf{Z}^{+} ions formed from the isotopes of \mathbf{Z} in part (c) will be have the shortest time of flight in a mass spectrometer.
	(4)
(e)	Explain briefly how the relative abundance of an ion is measured in a mass spectrometer.
	(2) (Total 15 marks)
	whith the olar les

(a)	Stat	e the number of protons and the number of neutrons in an atom of the isotope **Rb	
	Nun	nber of protons	
	Num	nber of neutrons	
(b)	E	xplain how the gaseous atoms of rubidium are ionised in a mass spectrometer	
(c)	(i)	State the block of elements in the Periodic Table that contains rubidium.	
	(ii)	Deduce the full electron configuration of a rubidium atom.	
(d)		ample of rubidium contains the isotopes ⁸⁵ Rb and ⁸⁷ Rb only. isotope ⁸⁵ Rb has an abundance 2.5 times greater than that of ⁸⁷ Rb	
		culate the relative atomic mass of rubidium in this sample. e your answer to one decimal place.	
(e)		y reference to the relevant part of the mass spectrometer, explain how the abundance ope in a sample of rubidium is determined.	of a
	Nam	ne of relevant part	
	Expl	anation	

		The (a)
	Write the formula of the nitride ion.	
(1		
electron	configuration as the nitride ion. Identify the ion Q .	(b)
(1 (Total 2 marks		
	Lithium hydride, LiH, is an ionic compound containing the hydride ion, HGive the electronic configuration of the hydride ion, HGIVE ION IN THE CONTROL OF THE HYDRIGHT IN TH	
(1 (Total 1 marks	e da le circuite.	
	The of or	
	Why Wed	

7.	Tł	nere is a general trend in the values of the first ionisation energies of the elements Na to Ar. The first ionisation energies of the elements Al and S deviate from this trend.	
	(a)	Write an equation, including state symbols, to represent the process for which the energy change is the first ionisation energy of Na.	
			(2)
	(b)	State and explain the general trend in the values of the first ionisation energies of the elements Na to Ar.	
		Trend	
		Explanation	
			(3)
	(c)	State how, and explain why, the values of the first ionisation energies of the elements Al and S deviate from the general trend.	
		How the values deviate from the trend	
		Explanation for Al	
		Explanation for S	
		(Total 10 ma	(5)
		(Total To Illa	i No)

. (a) Wha	t is meant by the term first ionisation energy?
(b) The	diagram below shows the variation in first ionisation energy across Period 3.
First	
ionisation energy	
card gy	
	Na Mg Al Si P C Cl Ar
	Period 3 element
(i)	What is the maximum number of electrons that can be accommodated in an s sub-level?
(ii)	What evidence from the clagram supports your answer to part (d)(i)?
(iii)	What evidence from the diagram supports the fact that the 3p sub-level is higher in energy than the 3s?
(iv)	What evidence from the diagram supports the fact that no more than three unpaired
	electrons can be accommodated in the 3p sub-level?

9. (a) Use your knowledge of electron configuration and ionisation energies to answer this question.

The following diagram shows the **second** ionisation energies of some Period 3 elements.

(i)	Draw an 'X' on the diagram to show the second ionisation energy of sulfur.	(1)
(ii)	Write the full electron configuration of the Al2+ ion.	
		(1)
(iii)	Write an equation to show the process that occurs when the second ionisation energy of aluminium is measured.	
		(1)
(iv)	Give one reason why the second ionisation energy of silicon is lower than the second ionisation energy of aluminium.	
		(1)
	ict the element in Period 3 that has the highest second ionisation energy. a reason for your answer.	
Elem	ent	
Reas	son	

(b)

(2)

(c) The following table gives the successive ionisation energies of an element in Period 3.

	First	Second	Third	Fourth	Fifth	Sixth
lonisation energy / kJ mol-1	786	1580	3230	4360	16100	19800

	Identify this element.	44)
d)	Explain why the ionisation energy of every element is endothermic.	(1)
	(Extra space)	
	The open and the circulate	(1) (Total 8 marks)
	The same of the sa	

10.		(a)	Complete the electronic configuration for the sodium ion, Na ⁻						
		ls².	ls ²						
	(b)	(i)	(i) Write an equation, including state symbols, to represent the process for which the energy change is the second ionisation energy of sodium.						
		(ii)	ii) Explain why the second ionisation energy of sodium is greater than the second ionisation energy of magnesium.						
								(3)	
		(iii)	ii) An element X in Period 3 of the Periodic Table has the following successive ionisation energies.						
				First	Second	Third	Fourth		
			Ionisation energies / kJ mol-1	577	1820	2740	11600		
			Deduce the identity of element X.						
	(c)		State and explain the trend in atomic radius of the Period 3 elements from sodium to chlorine.						
		Tre	Trend						
		Exp	Explanation						
							 (Total 1	(3) 0 marks)	

- Which one of the following is a correct electron arrangement?
 - Α Cu+ is [Ar]3d94s1
 - В Cu is [Ar]3d104s2
 - C Cu2+ is [Ar]3d84s1
 - D Cu⁺ is [Ar]3d¹⁰

(Total 1 mark)

12. Which one of the following lists the first ionisation energies (in kJ mol-1) of the elements Mg, Al, Si, P and S in this order?

Α	577	786	1060	1000	1260
В	736	577	786	1060	1000
С	786	1060	1000	1260	1520
D	1060	1000	1260	1520	418

(Total 1 mark)

- Which one of the following atoms has only two unpaired electrons in its ground (lowest energy) state? MM Theolog
 - Α helium
 - В beryllium
 - C nitrogen
 - D oxygen

(Total 1 mark)

In which one of the following pairs is the first ionisation energy of element Y greater than that of 14. element X?

	electronic configuration of element X	electronic configuration of element Y
Α	1s¹	ls²
В	1s² 2s²	ls ² 2s ² 2p ¹
С	1s² 2s²2p³	ls²2s²2p⁴
D	1s² 2s²2p6	ls ² 2s ² 2p ⁶ 3s ¹

(Total 1 mark)