A LEVEL CHEMISTRY TOPIC 17 – CARBOXYLIC ACIDS, AMINES, ESTERS AND ACYLATION **TEST** Answer all questions Max 50 marks | Name | | e · | |------|------|-------| | Mark | /50% | Grade | | | de o | | | 1. | (a) | Consider the fol | lowing pair of isomers. | | |-----|-----|------------------|--|----| | н—с | OCH | ₂CH₂CH₃ | но—с СН ₂ СН ₂ С | Ή3 | | | C | | D | | | | | | | | | (i) | Name compound C . | |------|---| | | | | (ii) | Identify a reagent which could be used in a test-tube reaction to distinguish between C and D . In each case, state what you would observe. | | | Reagent | | | Observation with C | | | Observation with D | | | (Total 4 marks) | | 2. | (a) | Write an equation for the formation of methyl propanoate, CH ₃ CH ₂ COOCH ₃ , from methanol and propanoic acid. | | |----|-----|---|-----| | | | | (1) | | | (b) | Name and outline a mechanism for the reaction between methanol and propanoyl chloride to form methyl propanoate. | | | | | Name of mechanism | | | | | Mechanism | | | | | ecxinte. | | | | (c) | Propanoic anhydride could be used instead of propanoyl chloride in the preparation of methyl propanoate from methanol. Draw the structure of propanoic anhydride. | (5) | | | | | (1) | | | (d) | (i) Give one advantage of the use of propanoyl chloride instead of
propanoic acid in the laboratory preparation of methyl
propanoate from methanol. | | | | | | | | | | | | - 3. Compound Z can be produced by the reaction of compound X with compound Y as shown in the synthesis outlined below: Identify compounds X and Y. For each of the three steps in the synthesis, name the type of reaction involved and give reagents and conditions. Equations are **not** required. | •••••• | |--| • | | ···················· | | | | | | ^ V | | | | . * | | | | | | | | | | ······································ | | | | | | | | | | | | | | ▼ | | | | | | | | | | | | | | | (10) (Total 10 marks) р - 4. This question is about the primary amine CH₃CH₂CH₂NH₂ - (a) The amine CH₃CH₂CH₂NH₂ reacts with CH₃COCI Name and outline a mechanism for this reaction. Give the IUPAC name of the organic product. (b) | | | (6) | |------|---|-----| | | ers of CH₃CH₂CH₂NH₂ include another primary amine, a ndary amine and a tertiary amine. | | | (i) | Draw the structures of these three isomers.
Label each structure as primary, secondary or tertiary. | | | | | | | | | | | | | | | | | (0) | | | | (3) | | (ii) | Use Table 1 on the Data Sheet to explain how you could use infrared spectra in the range outside the fingerprint region to distinguish between the secondary amine and the tertiary amine. | | | | | | | | | | | | | | (2) | |-----|------|---|-----| | (c) | The | amine CH₃CH₂CH₂NH₂ can be prepared by two different routes. | | | | Rout | e A is a two-stage process and starts from CH ₃ CH ₂ Br. | | | | Rout | e B is a one-stage process and starts from CH₃CH₂CH₂Br. | | | | (i) | Identify the intermediate compound in Route A. | | | | | Give the reagents and conditions for both stages in Route A and the single stage in Route B . | ······ |
(7) | |----|--|-------------| | i) | | | | | Give one disadvantage of Route A and one disadvantage of Route B . | | | | Route B . |

(2) | **5.** The triester, **T**, shown below is found in palm oil. When **T** is heated with an excess of sodium hydroxide solution, the alcohol glycerol is formed together with a mixture of three other products as shown in the following equation. | | | | Cl | H ₃ (CH ₂) ₁₄ COONa | | |---|---------------------------------|--|--------------------|---|-----| | CH2OOC(| $CH_2)_1$ | ₄ CH ₃ | CH ₂ OH | + | | | CHOOC(C | H ₂) ₇ (| CH=CH(CH ₂) ₇ CH ₃ +3NaOH→C | CHOH +CI | H ₃ (CH ₂) ₇ CH=CH(CH ₂) ₇ C | COC | | CH ₂ OOC(CH ₂) ₁₂ CH ₃ | | 2CH ₃ | H ₂ OH | + | | | | | | | H ₃ (CH ₂) ₁₂ COONa | | | Т | | 2 | lycerol | | | | (a) | (i) | Give the IUPAC name for glyce | erol. | | | | | | | | -C | (1) | | | (ii) | Give a use for the mixture of so | dium salts | formed in this reaction. | | | | | | .~(| U . | (1) | | (b) | | en T is heated with an excess of the ther with a mixture of methyl este | | llycerol is formed | | | | (i) | Give a use for this mixture of m | ethyl esters | S. | | | | | | | | (1) | | | (ii) | One of the methyl esters in the methyl (Z)-ostadec-9-enoate. Diagram below to illustrate the | raw two hy | drogen atoms on the | | | | \ | name or this ester. | | | | | | / | C | | | | | | | | | | (1) | | | (iii) | One of the other methyl esters CH ₃ (CH ₂) ₁₂ COOCH ₃ Write an equation for the comp of this ester. | | | | | | | | | | | whatsapp: Fahad Hameed +92 323 509 4443, email: megalecture@gmail.com (1) (Total 5 marks) whatsapp: Fahad Hameed +92 323 509 4443, email: megalecture@gmail.com 6. | Describe briefly how you could measure the melting point of aspirin. | |--| | | | | | | | | | (Total 2 marks) | | (Total 2 marks) | | |