

A LEVEL CHEMISTRY

TOPIC 16 - ALDEHYDES, KETONES AND OPTICAL ISOMERISM

TEST

Answer all questions

Max 50 marks

Name	COC
Mark	/50% Grade
	ale of the second secon

whatsapp:	Fahad	Hameed	+92	323	509	4443,	email:	megalect	ure@gmail.c	on!
-----------	-------	--------	-----	-----	-----	-------	--------	----------	-------------	-----

SECTION A

1.	(a)	(i)	Give a suitable reagent and state the necessary conditions for the conversion of propan- 2-ol into propanone. Name the type of reaction. Reagent	
		(ii)	Propanone can be converted back into propan-2-ol. Give a suitable reagent and write an equation for this reaction. (Use [H] to represent the reagent in your equation.) Reagent	(5)
	(b)	Prop	panal is an isomer of propanone.	
		(i)	Draw the structure of propanal.	
		(ii)	A chemical test can be used to distinguish between separate samples of propanone and propanal. Give a suitable reagent for the test and describe what you would observe with propanone and with propanal. Test reagent	
			Observation with propanone (Total 9 ma	(4) rks)

2. Consider the sequence of reactions below.

(a) Name and outline a mechanism for Reaction 1.

Name of mechanism

Mechanism

- (c) Draw the structure of the main organic product formed in each case when **R** reacts separately with the following substances:
 - (ii) acidified potassium dichromate(VI);

(iii) concentrated sulphuric acid in an elimination reaction.

(2) (Total 8 marks)

3. The reducing agent in the following conversion is NaBH₄

(i) Name and outline a mechanism for the reaction.

Name of mechanism

Mechanism

(5)

(ii) By considering the mechanism of this reaction, explain why the product formed is optically inactive.

(3) (Total 8 marks)

(Total 9 marks)

5. Compounds **C** and **D**, shown below, are isomers of C₅H₁₀O

C D

(a)	Name compound C .	
		(1)

- (b) Use **Table 2** on the Data Sheet to help you to answer this question.
 - (i) Suggest the wavenumber of an absorption which is present in the infra-red spectrum of **C** but not in that of **D**.

(ii) Suggest the wavenumber of an absorption which is present in the infra-red spectrum of ${\bf D}$ but not in that of ${\bf C}$.

	(2)

(c) Identify a reagent that you could use to distinguish between **C** and **D**. For each of **C** and **D**, state what you would observe when the compound is treated with this reagent.

·	
Observation with C	
Observation with D	
	(3)

(d) Compound **E**, CH₃CH₂CH₂CHO, is also an isomer of C₅H₁₀O

Identify a reagent which will react with **E** but not with **C** or **D**. State what you would observe when **E** is treated with this reagent.

Reagent	
Observation with E	

(Total 8 marks)

SECTION B

- **6.** Which one of the following reactions involves nucleophilic addition?
 - A $CH_3CH = CH_2 + HBr$ $CH_3CHBrCH_3$

- B CH₃CH₂CH₃ + Cl₂ CH₃CHClCH₃ + HCl
- C CH₃CH₂CH₂Br + NaOH CH₃CH₂CH₂OH + NaBr
- D CH₃CH₂CHO + HCN CH₃CH₂CH(OH)CN

(Total 1 mark)

- 7. Which one of the following isomers is not oxidised under mild reaction conditions?
 - A (CH₃)₂CHCH(OH)COCH₃
 - **B** (CH₃)₂C(OH)CH₂COCH₃
 - C (CH₃)₂CHCH(OH)CH₂CHO
 - D (CH₃)₂C(OH)CH₂CH₂CHO

D

(Total 1 mark)

8. In which one of the following are the curly arrows **not** used correctly?

$$_{\rm B}$$
 \longrightarrow $_{:\overline{\rm C}{\rm N}}$ \longrightarrow \longrightarrow $_{:\overline{\rm C}{\rm N}}$ + $_{:\overline{\rm B}{\rm r}{\rm -}}$

$$\bigcirc_{\bar{C}N}^{\bar{C}} \longrightarrow \bigcirc_{CN}^{\bar{C}}$$

(Total 1 mark)

atsa	app:	Fahad Hameed +92 323 509 4443, email: megalectur	re@gmail.co
9.	Whicl	h one of the following is not a suitable method for the preparation of ethanol?	
	Α	oxidation of ethane	
	В	hydration of ethene	
	С	reduction of ethanal	
	D	hydrolysis of bromoethane	(Total 1 mark)
			(Total 1 mark)
10.	Whicl	h one of the following will undergo nucleophilic addition?	
	Α	hex-3-ene	
	В	hexan-3-one	
	С	3-bromohexane	
	D	hexan-3-ol	(Total 1 mark)
			(Total Tillark)
11.	How	many structural isomers, which are aldehydes, have the molecular formula C₅H₁₀O?	
	Α	2	
	В	3	
	С	4	
	D	5	(Total 1 mark)
			(Total 1 mark)
12.	On re	eduction, a racemate can be formed by	
	Α	CH ₃ CH ₂ CH ₂ CHO	
	В	CH ₃ CH ₂ COCH ₃	
	С	CH ₃ CH ₂ COCH ₂ CH ₃	
	D	CH ₃ CH=CHCH ₂ CHO	(Total 1 mark)
			(10tal 1 mark)

The compound lithium tetrahydridoaluminate(III), LiAlH₄, is a useful reducing agent. It behaves in a similar fashion to NaBH₄. Carbonyl compounds and carboxylic acids are reduced to alcohols. However, LiAlH₄ also reduces water in a violent reaction so that it must be used in an organic solvent.

Which one of the following can be reduced by LiAlH₄ to a primary alcohol?

(Total 1 mark)