

A LEVEL CHEMISTRY

TOPIC 16 - ALDEHYDES, KETONES AND OPTICAL ISOMERISM

ASSESSED HOMEWORK

Answer all questions

Max 80 marks

Name	Coic
Mark	/80% Grade

1. The structures of the amino acid *alanine* is shown below:

Alanine exists as a pair of stereoisomers.

(i)	Explain the meaning of the term <i>stereoisomers</i> .
-----	--

(ii) State how you could distinguish between the stereoisomers.

(Total 4 marks)

2. (a) Consider the following pair of isomers.

(i) Name compound E.

(ii) Identify a reagent which could be used in a test-tube reaction to distinguish between **E** and **F**. In each case, state what you would observe.

Reagent

Observation with **E**

Observation with **F**.....

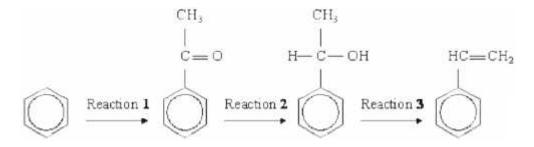
(4)

(b) Draw the structure of the chain isomer of **F** which shows optical isomerism.

3. Many synthetic routes need chemists to increase the number of carbon atoms in a molecule by forming new carbon–carbon bonds. This can be achieved in several ways including the reaction of an aldehyde with hydrogen cyanide.

Consider the reaction of propanal with HCN

(i)	Write an equation for the reaction of propanal with HCN and name the product.	
		(2)
/:: \	Name and autima a mach anion for the reaction of proposal with LICNI	(2)
(ii)	Name and outline a mechanism for the reaction of propanal with HCN	
	•	
	✓	
		(5)
(iii)	The rate-determining step in the mechanism in part (b) (ii) involves attack by the	
	nucleophile. Suggest how the rate of reaction of propanone with HCN would compare with the rate	
	of reaction of propanal with HCN Explain your answer.	


(Total 9 marks)

Chemists have to design synthetic routes to convert one organic compound into another. Propanone can be converted into 2-bromopropane by a three-step synthesis. Step 1: propanone is reduced to compound **L**. Step 2: compound L is converted into compound M. Step 3: compound **M** reacts to form 2-bromopropane. Deduce the structure of compounds **L** and **M**. For each of the three steps, suggest a reagent that could be used and name the mechanism. Equations and curly arrow mechanisms are **not** required.

whatsapp: Fahad Hameed +92 323 509 4443, email: megalecture@gmail.com

(Total 8 marks)

5. A possible synthesis of phenylethene (*styrene*) is outlined below.

(a) NaBH₄ is a possible reagent for Reaction 2. Name and outline the mechanism for the reaction with NaBH₄ in Reaction 2.

(a)	(i)	Give the IUPAC name for lactic acid.
	(ii)	Write an equation for the formation of lactic acid from sucrose and water.
b)	The A ra	olecule of lactic acid contains an asymmetric carbon atom. lactic acid in the body occurs as a single enantiomer. cemic mixture (racemate) of lactic acid can be formed in the following two-stage hesis.
		$\begin{array}{cccccccccccccccccccccccccccccccccccc$
	(i)	Name and outline a mechanism for Stage 1. Name of mechanism
	(ii)	Give the meaning of the term racemic mixture (racemate).
	(iii)	Explain how you could distinguish between a racemic mixture (racemate) of lactic acid

(2) (Total 10 marks)

The	e carbonyl compound CH₃CH₂CHO reacts very slowly with HCN	
(a)	Name and outline a mechanism for the reaction of CH ₃ CH ₂ CHO with HCN	
	Name of mechanism	
	Mechanism	
		(5)
(b)	The reaction in part (a) produces a pair of enantiamers	(5)
(b)	The reaction in part (a) produces a pair of enantiomers.	
	(i) Draw the structure of each enantiomer to show how they are related to each other.	
		(2)
	(ii) State and explain how you could distinguish between the two enantiomers.	
		(2)
(c)	Give the IUPAC name of the product of the reaction in part (a).	
		(1)
	(Total 10	

whatsapp: Fahad Hameed +92 323 509 4443, email: megalecture@gmail.com

7.

8. Two isomeric ketones are shown below.

CH ₃ - C - CH ₂ CH ₂ CH ₃	CH ₃ CH ₂ - C - CH ₂ CH ₃
O	O
Q	R

(a) Name and outline a mechanism for the reaction of compound **Q** with HCN and name the product formed.

Name of mechanism

Mechanism

Name of product	
·	(6)

(b) Some students were asked to suggest methods to distinguish between isomers **Q** and **R**.

One student suggested testing the optical activity of the products formed when ${\bf Q}$ and ${\bf R}$ were reacted separately with HCN.

By considering the optical activity of these products formed from ${\bf Q}$ and ${\bf R}$, explain why this method would **not** distinguish between ${\bf Q}$ and ${\bf R}$.

(3) (Total 9 marks)

(a)		panoic acid can be made from propan-1-ol by oxidation using acidified potassium romate(VI). Propanal is formed as an intermediate during this oxidation.	
	(i)	State the colour of the chromium species after the potassium dichromate(VI) has reacted.	
	(ii)	Describe the experimental conditions and the practical method used to ensure that the acid is obtained in a high yield. Draw a diagram of the assembled apparatus you would use.	
		Conditions	
		Apparatus	
		Apparatus Describe the different experimental conditions necessary to produce propanal in high yield rather than propanoic acid.	
	(iii)	Describe the different experimental conditions necessary to produce propanal in high yield rather than propanoic acid.	
		CP .	
(h)	Dron	oon 1 al is a valatile, flammable liquid	
(b)		pan-1-ol is a volatile, flammable liquid. • one safety precaution that should be used during the reaction to minimise this hazard.	

whatsapp: Fahad Hameed +92 323 509 4443, email: megalecture@gmail.com

(c)		udent followed the progress of the oxidation of propan-1-ol to propanoic acid by acting the organic compounds from one sample of reaction mixture.	
		(i)	Give a chemical reagent which would enable the student to confirm the presence of propanal in the extracted compounds. State what you would observe when propanal reacts with this reagent.	
			Reagent	
			Observation	
				(2)
		(ii)	Give a chemical reagent that would enable the student to confirm the presence of propanoic acid in the extracted compounds. State what you would observe when propanoic acid reacts with this reagent.	
			Reagent	
			Observation	
				(2)
(d)		dict which one of the compounds, propan-1-ol, propanal and propanoic acid will have the lest boiling point. Explain your answer.	
		Pred	diction	
		Ехр	lanation	
			/Total 15 m	(3)
			(Total 15 ma	aiks)

whatsapp: Fahad Hameed +92 323 509 4443, email: megalecture@gmail.com

10. Which one of the following can react both by nucleophilic addition and by nucleophilic substitution?

- $H_2C-CH=CH_2$
- C C1

D

CH3-C-

(Total 1 mark)

- 11. Which one of the following reaction mixtures would give a product capable of exhibiting optical isomerism?
 - A CH₃CH=CH₂ + HBr
 - **B** CH₃CH₂CH₂Br + NaOH
 - C CH₃CH₂CH₂OH + H₂SO₄
 - D CH₃CH₂ CHO + HCN

(Total 1 mark)

- 12. Which one of the following can exhibit both geometrical and optical isomerism?
 - A (CH₃)₂C=CHCH(CH₃)CH₂CH₃
 - B CH₃CH₂CH=CHCH(CH₃)CH₂CH₃
 - $C = (CH_3)_2C = C(CH_2CH_3)_2$
 - D CH₃CH₂CH(CH₃)CH(CH₃)C=CH₂

(Total 1 mark)