

A LEVEL CHEMISTRY

TOPIC 13 - ELECTROCHEMISTRY

TEST

Answer all questions

Max 50 marks

Name	
Mark	/50 Grade
Wir	· (Leo)

1. The table contains some standard electrode potential data.

Electrode half-equation	E / V
F ₂ + 2e ₋ 2F	+2.87
Au+ + e Au_	+1.68
2HOCl +_2H+ + 2e _ Cl ₂ + 2H ₂ O	+1.64
Cl ₂ + 2e _ 2Cl	+1.36
$O_2 + 4H^+ + 4e$ $2H_2O$	+1.23
Ag+ + e _ Ag	+0.80
Fe ³⁺ + e _ Fe ²⁺	+0.77
2H+ + 2e _ H ₂	0.00
Fe ²⁺ + 2e Fe	0.44

(a)	In terms of electrons, explain the meaning of the term oxidising agent.

(b) Identify the weakest oxidising agent in the table.Explain your choice.

Veakest oxidising agent	
Explanation	

(2)

(1)

winty the dark title

(c)	 Write the conventional representation of the cell used to measure standard electrode potential for the Ag+ / Ag electrode. 	
	State the conditions necessary when measuring this value.	
	Conventional representation	
	Conditions	
		(4)
(d)	Use data from the table to explain, in terms of redox, what happens when a soluble gold(I) compound containing Au ⁺ ions is added to water.	
	State what you would observe.	
	Write an equation for the reaction that occurs.	
	Explanation	
	Observation	
	Equation	
		(4)
(e)	A cell is made by connecting Fe ²⁺ / Fe and Ag ⁺ / Ag electrodes with a salt bridge.	

	(i)	Calculate the e.m.f. of this cell.	
	Α	nswer	(4)
			(1)
	(ii)	Suggest why potassium chloride would not be suitable for use in the salt bridge of this cell.	
		٧	
			(1)
			()
(f)	Use iron	data from the table to explain what happens when a solution of (II) chloride is exposed to the air.	
		The state of the s	
		<i>3</i> 7	
	•••••		
		(Total 15 m	(2) arks)

2. Use the data below, where appropriate, to answer the questions which

follow.

Standard electrode potentials →	E /V
2H ₊ (aq) + 2e ⁻ → H ₂ (g)	0.00
Br ₂ (aq) + 2e- 2Br-(aq)	+1.09
2BrO ₃ -(aq) + 12H ₊ (aq) + 10e- Br ₂ (aq) + 6H ₂ O(l)	+1.52

Each of the above can be reversed under suitable conditions.

(a)	State the hydrogen ion concentration and the hydrogen gas pressure when, at 298 K, the potential of the hydrogen electrode is 0.00 V.	
	Hydrogen ion concentration	
	Hydrogen gas pressure	(2)
(b)	The electrode potential of a hydrogen electrode changes when the hydrogen ion concentration is reduced. Explain, using Le Chatelier's principle, why this change occurs and state how the electrode potential of the hydrogen electrode changes.	
	Explanation of change	
	Change in electrode	

(3)

(c) A diagram of a cell using platinum electrodes **X** and **Y** is shown below.

(i)	Use the data above to calculate	e the e.m.f. of the above cel
	under standard conditions.	

(ii) Write a half-equation for the reaction occurring at electrode **X** and an overall equation for the cell reaction which occurs when electrodes **X** and **Y** are connected.

Halfequation

Overall
equation

....

(4) (Total 9 marks)

3. Nickel–cadmium cells are used to power electrical equipment such as drills and shavers. \rightarrow

The electrode reactions are shown below.

$$NiO(OH) + H_2O + e^{-} \rightarrow Ni(OH)_2 + OH^{-} \rightarrow E^{-} = +0.52 \text{ V}$$

$$Cd(OH)_2 + 2e$$
 $Cd + 2OH$ $E^- = -0.88 \text{ V}$

(a)	Calculate the e.m.f. of a nickel-cadmium cell.		
		(1)	
(b)	Deduce an overall equation for the reaction that occurs in the cell when it is used.		
		(2)	
(c)	Identify the oxidising agent in the overall cell reaction and give the oxidation state of the metal in this oxidising agent.		
	Oxidising agent		
	Oxidation		

4. Redox reactions occur in the discharge of all electrochemical cells. Some of these cells are of commercial value.

The table below shows some redox half-equations and standard electrode potentials.

Half-equa tið n	
Zn₂₊(aq) + 2e- Z n(s)	-0.76
Ag₂O(s) + 2H₁(aq) + 2e- 2Ag(s) + H₂O(I)	+0.34
O₂(g) + 4H⋅(aq) + 4e- 2H₂O(I)	+1.23

(Total 5 marks)

F ₂ (g) + 2e-	2F-(aq)
--------------------------	---------

+2.87

(a)	In terms of electrons, state what happens to a reducing agent in a	
	redox reaction.	
		(1)
(b)	Use the table above to identify the strongest reducing agent from the species in the table.	
	Explain how you deduced your answer.	
	Strongest reducing agent	
	Explanation	
		(2)
(c)	Use data from the table to explain why fluorine reacts with water.	
	Write an equation for the reaction that occurs.	
	Explanation	
	17	

(3)

(d)	An electrochemical cell can be constructed using a zinc electrode and
	an electrode in which silver is in contact with silver oxide. This cell can
	be used to power electronic devices.

(i)	Give the conventional representation for this cell.	
		(2)
(ii)	Calculate the e.m.f. of the cell.	
		(1)
(iii)	Suggest one reason why the cell cannot be electrically recharged.	
		(1)
The belo	electrode half-equations in a lead–acid cell are shown in the w. \longrightarrow	table
	Half-equation	<i>E</i> -/ V
F	$PbO_2(s) + 3H_1(aq) + HSO_4(aq) + 2e^{-}$ $PbSO_4(s) + 2H_2O(l)$	+1.69
	$PbSO_4(s) + H_1(aq) + 2e_1 \qquad Pb(s) + HSO_4(aq)$	to be calculated
(i)	The PbO ₂ /PbSO ₄ electrode is the positive terminal of the ce the e.m.f. of the cell is 2.15 V.	ll and
	Use this information to calculate the missing electrode pote for the half-equation shown in the table.	ntial

(e)

(1)

	(ii)	A lead–acid cell can be recharged. Write an equation for the overall reaction that occurs when the cell is being recharged.	
		•••••	
			(2)
(f)	The with	diagrams below show how the e.m.f. of each of two cells changes time when each cell is used to provide an electric current.	
e.m.f	/v	Lead-acid cell Cell X e.m.f/V	
		time/hours	-3
	(i)	Give che reason why the e.m.f. of the lead-acid cell changes after several hours.	
			(1)
	(ii)	Identify the type of cell that behaves like cell X .	
			(1)

whatsapp: Fahad Hameed +92 323 509 4443, email: megalecture@gmail.com

(iii)	Explain why the voltage remains constant in cell X .
	(2)
	(Total 17 marks)

5. A disproportionation reaction occurs when a species **M**⁺ spontaneously undergoes simultaneous oxidation and reduction.

$$2M+(aq) M^{2+}(aq) + M(s)$$

The table below contains E data for copper and mercury species.

→ -	E /V
Cu²+(aq) + e → Cu+(aq)	+ 0.15
Cu⁺(aq) + e → Cu(s)	+ 0.52
$Hg^{2+}(aq) + e \xrightarrow{-} Hg+(aq)$	+ 0.91
Hg⁺(aq) + e Hg(l)	+ 0.80

Using these data, which one of the following can be predicted?

- A Both Cu(I) and Hg(I) undergo disproportionation.
- **B** Only Cu(I) undergoes disproportionation.
- **C** Only Hg(I) undergoes disproportionation.
- **D** Neither Cu(I) nor Hg(I) undergoes disproportionation.

(Total 1 mark)

6. Use the data in the table below to answer this question.

	E /V
$MnO^{+}(aq) + 8H_{1}(aq) + 5e \rightarrow Mn^{2+}(aq) + 4H_{2}O(l)$	+ 1.52
$Cr_2O^{\frac{2}{3}}$ (aq) + 14H+(aq) + 6e 2Cr ₃ +(aq) + 7H ₂ O(I)	+ 1.33
Fe³+(aq) + e _ Fe²+(aq)	+ 0.77
Cr³+(aq) + e _ Cr²+(aq)	0.41
Zn ²⁺ (aq) + 2e Zn(s)	0.76

The most powerful oxidising agent in the table is

- **A** Mn²⁺(aq)
- \mathbf{B} Zn(s)
- C MnO (aq)
- **D** Zn²⁺(aq)

(Total 1 mark)

7. In this question consider the data below.

$$Ag^{+}(aq) + e \xrightarrow{} Ag(s) + 0.80$$

$$2H^{+}(aq) + 2e \xrightarrow{} H_{2}(g) 0.00$$

$$Pb^{2+}(aq) + 2e \qquad Pb(s) 0.13$$

The e.m.f. of the cell $Pt(s)\mid H_{\mbox{\tiny 2}}(g)\mid H^{\mbox{\tiny +}}(aq)\mid Ag^{\mbox{\tiny +}}(aq)\mid Ag(s)$ would be increased by

- A increasing the concentration of H₁(aq).
- **B** increasing the surface area of the Pt electrode.
- **C** increasing the concentration of Ag⁺(aq).
- **D** decreasing the pressure of $H_2(g)$.

(Total 1 mark)

8. In this question consider the data below.

$$Ag^{+}(aq) + e \xrightarrow{} Ag(s) + 0.80$$

$$2H^{+}(aq) + 2e \xrightarrow{} H_{2}(g) 0.00$$

$$Pb^{2+}(aq) + 2e \qquad Pb(s) 0.13$$

The e.m.f. of the cell $Ag(s) \mid Ag+(aq) \mid \mid Pb^{2+}(aq) \mid Pb(s)$ is

- A 0.93 V
- **B** 0.67 V

MEGA LECTURE

C 0.67 V

D 0.93 V

(Total 1 mark)

wind alectrize con