Online Classes : Megalecture@gmail.com www.youtube.com/megalecture www.megalecture.com

Q1.

2	(a)	H ^x , C ^x , C° _x H		
		x 0	(1)	[1]
	(b)	$n = \frac{PV}{RT} = \frac{(1515 \times 10^3) \times (76 \times 10^{-3})}{8.31 \times 298}$	(1)	
		= 46.5	(1)	[2]
	(c)	(i) $CaC_2 + 2H_2O \rightarrow Ca(OH)_2 + C_2H_2$	(1)	
		(ii) $n(C_2H_2) = n(CaC_2) = 100 \times 46.5$	(1)	
		mass of CaC ₂ = 100 x 46.5 x 64 =		
		= 297 570 g		
		= 297.6 kg (accept 298 kg) correct units necessary	(1)	
		allow e.c.f. on candidate's answer in (b)		[3]
Q2.		-		
ŲZ.				
2	(a)	there are no inter-molecular forces present between ideal gas molecules ideal gas molecules have no volume		
		collisions between ideal gas molecules are perfectly elastic ideal gas molecules behave as rigid spheres	(any 2)	[2]
	(b)	high temperature low pressure	(1) (1)	[2]
	(c)	most ideal neon nitrogen ammonia least ideal nitrogen has stronger van der Waals' forces than argon ammonia has hydrogen bonding as well as van der Waals' forces	(1) (1) (1)	[3]
			(.)	[-]
	(d)	with increasing temperature, average kinetic energy of molecules increases intermolecular forces are more easily broken	(1) (1)	[2]
			. ,	

Q3.

Online Classes : Megalecture@gmail.com www.youtube.com/megalecture www.megalecture.com

(d)	n =	$\frac{PV}{RT} = \frac{6 \times 10^5 \times 710 \times 10^{-6}}{8.31 \times 293}$	(1)	
		0.175	(1)	[2]
(e)	P =	$\frac{nRT}{V} = \frac{0.175 \times 8.31 \times 278}{710 \times 10^6}$	(1)	
	=	569410.5634 Pa = 5.7 x 10 ⁵	(1)	
	allo	w ecf on (d)		[2]
Q4.				
(c)	(i)	for an ideal gas, any four from the following		
		the molecules behave as rigid spheres	(1)	
		there are no/negligible intermolecular forces between the molecules	(4)	
		collisions between the molecules are perfectly elastic	(1) (1)	
		the molecules have no/negligible volume	(1)	
		the molecules move in random motion	(1)	
		the molecules move in straight lines	(1)	
		the kinetic energy of the molecules is		
		directly proportional to the temperature	(1)	
		the pressure exerted by the gas is due to the collisions	(4)	
		between the gas molecules and the walls of the container not an ideal gas obeys $pV = nRT$	(1)	
		aca. gao obojo pr	(max 4)	
	(ii)	there are intermolecular forces between CO ₂ molecules/		

(1)

[5]

CO₂ molecules have volume