These are P2 questions(all variants) as the syllabus is same as P3:)

Q1.

- 2 The polynomial $x^4 9x^2 6x 1$ is denoted by f(x).
 - (i) Find the value of the constant a for which

$$f(x) = (x^2 + ax + 1)(x^2 - ax - 1).$$
 [3]

(ii) Hence solve the equation f(x) = 0, giving your answers in an exact form. [3]

Q2.

- 3 The cubic polynomial $2x^3 + ax^2 13x 6$ is denoted by f(x). It is given that (x 3) is a factor of f(x).
 - (i) Find the value of a. [2]
 - (ii) When a has this value, solve the equation f(x) = 0. [4]

Q3.

- 4 The polynomial $x^3 x^2 + ax + b$ is denoted by p(x). It is given that (x + 1) is a factor of p(x) and that when p(x) is divided by (x 2) the remainder is 12.
 - (i) Find the values of a and b. [5]
 - (ii) When a and b have these values, factorise p(x). [2]

Q4.

- 4 The cubic polynomial $ax^3 + bx^2 3x 2$, where a and b are constants, is denoted by p(x). It is given that (x-1) and (x+2) are factors of p(x).
 - (i) Find the values of a and b. [5]
 - (ii) When a and b have these values, find the other linear factor of p(x).
 [2]

Q5.

- 4 The polynomial $2x^3 3x^2 + ax + b$, where a and b are constants, is denoted by p(x). It is given that (x-2) is a factor of p(x), and that when p(x) is divided by (x+2) the remainder is -20.
 - (i) Find the values of a and b. [5]
 - (ii) When a and b have these values, find the remainder when p(x) is divided by $(x^2 4)$. [3]

Q6.

The polynomial $2x^3 + 7x^2 + ax + b$, where a and b are constants, is denoted by p(x). It is given that (x + 1) is a factor of p(x), and that when p(x) is divided by (x + 2) the remainder is 5. Find the values of a and b.

Q7.

- 6 The polynomial $x^3 + ax^2 + bx + 6$, where a and b are constants, is denoted by p(x). It is given that (x-2) is a factor of p(x), and that when p(x) is divided by (x-1) the remainder is 4.
 - (i) Find the values of a and b. [5]
 - (ii) When a and b have these values, find the other two linear factors of p(x). [3]

Q8.

- 4 The polynomial $x^3 + 3x^2 + 4x + 2$ is denoted by f(x).
 - (i) Find the quotient and remainder when f(x) is divided by $x^2 + x 1$. [4]
 - (ii) Use the factor theorem to show that (x+1) is a factor of f(x). [2]

Q9.

- 7 The polynomial $2x^3 + ax^2 + bx + 6$, where a and b are constants, is denoted by p(x). It is given that when p(x) is divided by (x 3) the remainder is 30, and that when p(x) is divided by (x + 1) the remainder is 18.
 - (i) Find the values of a and b. [5]
 - (ii) When a and b have these values, verify that (x-2) is a factor of p(x) and hence factorise p(x) completely. [4]

Q10.

4 The polynomial f(x) is defined by

$$\mathbf{f}(x) = 3x^3 + ax^2 + ax + a,$$

where a is a constant.

- (i) Given that (x + 2) is a factor of f(x), find the value of a. [2]
- (ii) When a has the value found in part (i), find the quotient when f(x) is divided by (x + 2). [3]

Q11.

7 The cubic polynomial p(x) is defined by

$$p(x) = 6x^3 + ax^2 + bx + 10,$$

where a and b are constants. It is given that (x + 2) is a factor of p(x) and that, when p(x) is divided by (x + 1), the remainder is 24.

(i) Find the values of a and b.

[5]

(ii) When a and b have these values, factorise p(x) completely.

[3]

Q12.

3 The polynomial p(x) is defined by

$$p(x) = ax^3 - 3x^2 - 5x + a + 4,$$

where a is a constant.

(i) Given that (x-2) is a factor of p(x), find the value of a.

[2]

- (ii) When a has this value,
 - (a) factorise p(x) completely,

[3]

(b) find the remainder when p(x) is divided by (x + 1).

[2]

Q13.

3 (i) Find the quotient when the polynomial

$$8x^3 - 4x^2 - 18x + 13$$

is divided by $4x^2 + 4x - 3$, and show that the remainder is 4.

[3]

(ii) Hence, or otherwise, factorise the polynomial

$$8x^3 - 4x^2 - 18x + 9$$
.

[2]

Q14.

4 The polynomial $ax^3 - 5x^2 + bx + 9$, where a and b are constants, is denoted by p(x). It is given that (2x + 3) is a factor of p(x), and that when p(x) is divided by (x + 1) the remainder is 8.

(i) Find the values of a and b.

[5]

(ii) When a and b have these values, factorise p(x) completely.

[3]

Q15.

- 3 (i) The polynomial $2x^3 + ax^2 ax 12$, where a is a constant, is denoted by p(x). It is given that (x+1) is a factor of p(x). Find the value of a. [2]
 - (ii) When a has this value, find the remainder when p(x) is divided by (x + 3). [2]

Q16.

2 The cubic polynomial $2x^3 + ax^2 + b$ is denoted by f(x). It is given that (x + 1) is a factor of f(x), and that when f(x) is divided by (x + 2) the remainder is -5. Find the values of a and b. [5]

Q17.

- 3 The polynomial $x^4 6x^2 + x + a$ is denoted by f(x).
 - (i) It is given that (x + 1) is a factor of f(x). Find the value of a. [2]
 - (ii) When a has this value, verify that (x 2) is also a factor of f(x) and hence factorise f(x) completely. [4]

Q18.

The cubic polynomial $2x^3 - 5x^2 + ax + b$ is denoted by f(x). It is given that (x - 2) is a factor of f(x), and that when f(x) is divided by (x + 1) the remainder is -6. Find the values of a and b. [5]

Q19.

- 2 The polynomial $x^3 + 2x^2 + 2x + 3$ is denoted by p(x).
 - (i) Find the remainder when p(x) is divided by x 1. [2]
 - (ii) Find the quotient and remainder when p(x) is divided by $x^2 + x 1$. [4]

Q20.

- 3 The polynomial $4x^3 7x + a$, where a is a constant, is denoted by p(x). It is given that (2x 3) is a factor of p(x).
 - (i) Show that a = -3. [2]
 - (ii) Hence, or otherwise, solve the equation p(x) = 0. [4]

Q21.

5	The polynomial $3x^3 + 8x^2 + ax - 2$, where a is a constant, is denoted by $p(x)$. It is given that (x is a factor of $p(x)$).	+2)
	(i) Find the value of a.	[2]
	(ii) When a has this value, solve the equation $p(x) = 0$.	[4]
Q22.		
2	The polynomial $2x^3 - x^2 + ax - 6$, where a is a constant, is denoted by $p(x)$. It is given that $(x + a \text{ factor of } p(x))$.	2) is
	(i) Find the value of a.	[2]
	(ii) When a has this value, factorise $p(x)$ completely.	[3]
Q23.		
3	The polynomial $4x^3 - 8x^2 + ax - 3$, where a is a constant, is denoted by $p(x)$. It is given that $(2x - 6x^2 + 6x^2 $	+ 1)
	(i) Find the value of a.	[2]
	(ii) When a has this value, factorise $p(x)$ completely.	[4]
Q24.		
5	The polynomial $ax^3 + bx^2 - 5x + 2$, where a and b are constants, is denoted by $p(x)$. It is give $(x+1)$ and $(x-2)$ are factors of $p(x)$.	n that
	(i) Find the values of a and b .	[5]
	(ii) When a and b have these values, find the other linear factor of $p(x)$.	[2]
Q25.		
7	The polynomial $3x^3 + 2x^2 + ax + b$, where a and b are constants, is denoted by $p(x)$. It is given $(x-1)$ is a factor of $p(x)$, and that when $p(x)$ is divided by $(x-2)$ the remainder is 10.	that

Q26.

(i) Find the values of a and b.

(ii) When a and b have these values, solve the equation p(x) = 0.

[5]

[4]

3 The polynomial $x^3 + 4x^2 + ax + 2$, where a is a constant, is denoted by p(x). It is given that the remainder when p(x) is divided by (x + 1) is equal to the remainder when p(x) is divided by (x - 2).

(i) Find the value of a. [3]

(ii) When a has this value, show that (x-1) is a factor of p(x) and find the quotient when p(x) is divided by (x-1).

Q27.

- The polynomial $4x^3 + ax^2 + 9x + 9$, where a is a constant, is denoted by p(x). It is given that when p(x) is divided by (2x 1) the remainder is 10.
 - (i) Find the value of a and hence verify that (x-3) is a factor of p(x). [3]
 - (ii) When a has this value, solve the equation p(x) = 0. [4]

Q28.

- The polynomial $ax^3 3x^2 11x + b$, where a and b are constants, is denoted by p(x). It is given that (x + 2) is a factor of p(x), and that when p(x) is divided by (x + 1) the remainder is 12.
 - (i) Find the values of a and b. [5]
 - (ii) When a and b have these values, factorise p(x) completely. [3]

Q29.

- 6 (i) The polynomial $x^4 + ax^3 x^2 + bx + 2$, where a and b are constants, is denoted by p(x). It is given that (x-1) and (x+2) are factors of p(x). Find the values of a and b. [5]
 - (ii) When a and b have these values, find the quotient when p(x) is divided by $x^2 + x 2$. [3]

Q30.

- 7 The polynomial $2x^3 4x^2 + ax + b$, where a and b are constants, is denoted by p(x). It is given that when p(x) is divided by (x + 1) the remainder is 4, and that when p(x) is divided by (x 3) the remainder is 12.
 - (i) Find the values of a and b. [5]
 - (ii) When a and b have these values, find the quotient and remainder when p(x) is divided by $(x^2 2)$.

Q31.

- 3 The polynomial $x^4 4x^3 + 3x^2 + 4x 4$ is denoted by p(x).
 - (i) Find the quotient when p(x) is divided by $x^2 3x + 2$.
 - (ii) Hence solve the equation p(x) = 0. [3]

[3]

[2]

Q32.

- 4 (i) The polynomial $x^3 + ax^2 + bx + 8$, where a and b are constants, is denoted by p(x). It is given that when p(x) is divided by (x 3) the remainder is 14, and that when p(x) is divided by (x + 2) the remainder is 24. Find the values of a and b. [5]
 - (ii) When a and b have these values, find the quotient when p(x) is divided by $x^2 + 2x 8$ and hence solve the equation p(x) = 0. [4]

Q33.

- 4 (i) The polynomial $ax^3 + bx^2 25x 6$, where a and b are constants, is denoted by p(x). It is given that (x-3) and (x+2) are factors of p(x). Find the values of a and b. [5]
 - (ii) When a and b have these values, factorise p(x) completely. [2]

Q34.

- 3 (i) Find the quotient when $6x^4 x^3 26x^2 + 4x + 15$ is divided by $(x^2 4)$, and confirm that the remainder is 7. [3]
 - (ii) Hence solve the equation $6x^4 x^3 26x^2 + 4x + 8 = 0$. [3]

Q35.

6 The polynomial p(x) is defined by

$$p(x) = x^3 + 2x + a,$$

where a is a constant.

- (i) Given that (x + 2) is a factor of p(x), find the value of a.
- (ii) When a has this value, find the quotient when p(x) is divided by (x + 2) and hence show that the equation p(x) = 0 has exactly one real root. [5]

Q36.

5 (i) Given that (x+2) and (x+3) are factors of

$$5x^3 + ax^2 + b,$$

find the values of the constants a and b.

[4]

(ii) When a and b have these values, factorise

$$5x^3 + ax^2 + b$$

completely, and hence solve the equation

$$5^{3y+1} + a \times 5^{2y} + b = 0,$$

giving any answers correct to 3 significant figures.

[5]

P3 (variant1 and 3)

Q1.

4 The polynomial f(x) is defined by

$$f(x) = 12x^3 + 25x^2 - 4x - 12.$$

(i) Show that f(-2) = 0 and factorise f(x) completely.

[4]

(ii) Given that

$$12 \times 27^{y} + 25 \times 9^{y} - 4 \times 3^{y} - 12 = 0$$
,

state the value of 3^y and hence find y correct to 3 significant figures.

[3]

Q2.

- The polynomial $ax^3 + bx^2 + 5x 2$, where a and b are constants, is denoted by p(x). It is given that (2x 1) is a factor of p(x) and that when p(x) is divided by (x 2) the remainder is 12.
 - (i) Find the values of a and b.

[5]

(ii) When a and b have these values, find the quadratic factor of p(x).

[2]

Q3.

2	The	l a mai al	- (2)		1-61	1
	The bo	lynomial	DUA	118	defined	DV

$$p(x) = x^3 - 3ax + 4a,$$

where a is a constant.

(i) Given that (x-2) is a factor of p(x), find the value of a.

[2]

- (ii) When a has this value,
 - (a) factorise p(x) completely,

[3]

(b) find all the roots of the equation $p(x^2) = 0$.

[2]

Q4.

1 Find the quotient and remainder when $2x^2$ is divided by x + 2.

[3]

Q5.

- 5 The polynomial $8x^3 + ax^2 + bx + 3$, where a and b are constants, is denoted by p(x). It is given that (2x + 1) is a factor of p(x) and that when p(x) is divided by (2x 1) the remainder is 1.
 - (i) Find the values of a and b.

[5]

(ii) When a and b have these values, find the remainder when p(x) is divided by $2x^2 - 1$.

[3]

Q6.

10 The polynomial p(z) is defined by

$$p(z) = z^3 + mz^2 + 24z + 32$$
,

where m is a constant. It is given that (z + 2) is a factor of p(z).

(i) Find the value of m.

[2]

- (ii) Hence, showing all your working, find
 - (a) the three roots of the equation p(z) = 0,

[5]

(b) the six roots of the equation $p(z^2) = 0$.

[6]

Q7.

- 3 The polynomial $x^4 + 3x^3 + ax + 3$ is denoted by p(x). It is given that p(x) is divisible by $x^2 x + 1$.
 - (i) Find the value of a.

[4]

(ii) When a has this value, find the real roots of the equation p(x) = 0.

[2]

Q8.

7 The polynomial p(x) is defined by

$$p(x) = ax^3 - x^2 + 4x - a$$

where a is a constant. It is given that (2x-1) is a factor of p(x).

(i) Find the value of a and hence factorise p(x).

[4]

(ii) When a has the value found in part (i), express $\frac{8x-13}{p(x)}$ in partial fractions. [5]

Q9.

3 The polynomial f(x) is defined by

$$f(x) = x^3 + ax^2 - ax + 14$$

where a is a constant. It is given that (x + 2) is a factor of f(x).

- (i) Find the value of a. [2]
- (ii) Show that, when a has this value, the equation f(x) = 0 has only one real root. [3]

Q10.

3 The polynomial $ax^3 + bx^2 + x + 3$, where a and b are constants, is denoted by p(x). It is given that (3x + 1) is a factor of p(x), and that when p(x) is divided by (x - 2) the remainder is 21. Find the values of a and b.

Q11.

- 3 The polynomial $4x^3 + ax^2 + bx 2$, where a and b are constants, is denoted by p(x). It is given that (x+1) and (x+2) are factors of p(x).
 - (i) Find the values of a and b. [4]
 - (ii) When a and b have these values, find the remainder when p(x) is divided by $(x^2 + 1)$. [3]