Q1.

2	! (i) <i>El</i>	THER: Expand RHS and obtain at least one equation for a Obtain $a^2 = 9$ and $2a = 6$, or equivalent State answer $a = 3$ only	M1 A1 A1	
	OF	Attempt division by $x^2 + ax + 1$ or $x^2 - ax - 1$, and obtain an equation in Obtain $a^2 = 9$ and either $a^3 - 1$ la $+ 6 = 0$ or $a^3 - 7a - 6 = 0$, or equivalen State answer $a = 3$ only	n a M1 nt A1 A1	
		[Special case: the answer <i>a</i> = 3, obtained by trial and error, or by inspection, or with no working earns B2.]	[3]	
	(ii)	Substitute for a and attempt to find zeroes of one of the quadratic factorisation one correct answer State all four solutions $\frac{1}{2}(-3 \pm \sqrt{5})$ and $\frac{1}{2}(3 \pm \sqrt{13})$, or equivalent	torsM1 A1 A1	
			[3]	
Q2.				
3	(i)	Substitute $x = 3$ and equate to zero Obtain answer $\alpha = -1$	M1 A1	2
	(ii)	At any stage, state that $x=3$ is a solution EITHER: Attempt division by $(x-3)$ reaching a partial quotient of $2x^2 + kx$ Obtain quadratic factor $2x^2 + 5x + 2$ Obtain solutions $x = -2$ and $x = -\frac{1}{2}$ OR: Obtain solution $x = -2$ by trial and error Obtain solution $x = -\frac{1}{2}$ similarly [If an attempt at the quadratic factor is made by inspection, the M1 is earned if it runknown factor of $2x^2 + bx + c$ and an equation in b and/or c.]	B1 M1 A1 A1 B1 B2 reaches a	4 an
Q3.				
4	(i)	Substitute $x = -1$ and equate to zero obtaining e.g. $(-1)^3 - (-1)^2 + a(-1) + b = 0$ Substitute $x = 2$ and equate to 12 Obtain a correct 3-term equation Solve a relevant pair of equations for a or b Obtain $a = 2$ and $b = 4$	B1 M1 A1 M1 A1	5
	(ii)	Attempt division by $x+1$ reaching a partial quotient of x^2+kx , or similar stage by inspection Obtain quadratic factor $x^2-2x=4$ [Ignore failure to repeat that $x+1$ is a factor]	M1 A1	2

Q4.

OF.	Obs Soli Obs (ii) Sul	tain a correct tain a second we a relevant tain $a = 2$ and	and h and either divide by $(x+1)(x+2)$ or attempt third factor by inspection		MI AI AI MI AI MI	5
Q5.						
4	(i)	16 – Subs Obta Solv	titute $x = 2$, equate to zero, and state a correct equation, e.g. $12 + 2a + b = 0$ titute $x = -2$ and equate to -20 in a correct equation, e.g. $-16 - 12 - 2a + b = -20$ e for a or for b in $a = -3$ and $b = 2$	B1 M1 A1 M1 A1		[5]
	(ii)	simil	mpt division by $x^2 - 4$ reaching a partial quotient of $2x - 3$, or a ar stage by inspection in remainder $5x - 10$	B1 B1√+1	В1√	[3]
Q6.						
4	Substit Obtain Solve a	tute $x = -2$ a correct e	equate to zero and obtain a correct equation in any form and equate to 5 quation in any form air of equations for a or for b $b = -3$	B1 M1 A1 M1 A1		[5]
Q7.						
6	(i)	Substitute Obtain a c Solve for	x = 2, equate to zero and state a correct equation, e.g. $8 + 4a + 2b + x = 1$ and equate to 4 orrect equation. e.g. $1 + a + b + 6 = 4$ a or for $b = -4$ and $b = 1$	6 = 0	B1 M1 A1 M1 A1	[5]
	(ii)	EITHER: OR:	Attempt division by $x-2$ reaching a partial quotient of $x^2 + kx$ Obtain remainder quadratic factor $x^2 - 2x - 3$ State linear factors $(x-3)$ and $(x+1)$ Obtain linear factor $(x+1)$ by inspection Obtain factor $(x-3)$ similarly		M1 A1 A1 B1 B2	[3]

Q8.

4	(i)	Obtain quotient $x + 2$	M1 A1 A1	
			11√	[4]
	(ii)		M1 A1	[2]
Q9.				
7		Substitute $x = -1$ and equate to 18 Obtain a correct equation in any form Solve a relevant pair of equations for a or for b	M1 M1 A1 M1	[5]
		Obtain quadratic factor $2x^2 + 5x - 3$ Obtain linear factor $2x - 1$	B1 B1 B1 B1	[4]
Q10	•			
4	(i)	Substitute -2 and equate to zero or divide by $x + 2$ and equate remainder to zero Obtain $a = 8$	M1 A1	[2]
	(ii)	Attempt to find quotient by division or inspection or use of identity	M1	
		Obtain at least $3x^2 + 2x$ Obtain $3x^2 + 2x + 4$ with no errors seen	A1 A1	[3]
Q11	•			
7	(i)	Substitute $x = -1$ and equate to 24 Obtain $4a - 2b = 38$ and $a - b = 20$ or equivalents	M1 M1 A1 M1 A1	[5]
	(ii)		M1 A1√ A1	[3]

Q12.

3	(i)		estitute 2 and equate to zero or divide and equate remainder to zero a in $a = 2$	M1 A1	[2]
	(ii)	(a)	Attempt to find quadratic factor by division, inspection or identity Obtain $2x^2 + x - 3$ Conclude $(x - 2)(2x + 3)(x - 1)$	M1 A1 A1	[3]
		(b)	Attempt substitution of -1 or attempt complete division by $x + 1$ Obtain 6	M1 A1	[2]

Q13.

3	(i)	Attempt division, or equivalent, at least as far as quotient $2x + k$	M1	
		Obtain quotient $2x-3$	A1	
		Complete process to confirm remainder is 4	A1	[3]
	(ii)	State or imply $(4x^2 + 4x - 3)$ is a factor	B1	
		Obtain $(2x-3)(2x-1)(2x+3)$	B1	[2]

Q14.

4 (i) Substitute
$$x = -\frac{3}{2}$$
, equate to zero

M1

Substitute $x = -1$ and equate to 8

Obtain a correct equation in any form

Solve a relevant pair of equations for a or for b

Obtain $a = 2$ and $b = -6$

M1

[5]

© Cambridge International Examinations 2013

Page 5	Mark Scheme	Syllabus	Paper
	GCE AS LEVEL - May/June 2013	9709	21

(ii) Attempt either division by 2x + 3 and reach a partial quotient of x² + kx, use of an identity or observation M1
 Obtain quotient x² - 4x + 3
 Obtain linear factors x - 1 and x - 3
 [Condone omission of repetition that 2x + 3 is a factor.]
 [If linear factors x - 1, x - 3 obtained by remainder theorem or inspection, award B2 + B1.]
 [3]

Q15.

3	(i)	Substitute $x = -1$ and equate to zero Obtain answer $a = 7$	M1 A1	[2]
	(ii)	Substitute $x = -3$ and evaluate expression Obtain answer 18	M1 A1	[2]

Q16.

2	State or obtain $-2 + a + b = 0$, or equivalent			B1
	Substitute $x = -2$ and equate to -5		10	M1
*1	Obtain 3-term equation, or equivalent			A1
	Solve a relevant pair of equations, obtaining a or b			M1
	Obtain both answers $a = 3$ and $b = -1$	*	211	A1 . 5

Q17.

3 (i) EITHER:	Substitute -1 for x and equate to zero	M1
	Obtain answer <i>a</i> =6	A1
OR:	Carry out complete division and equate remainder to zero	M 1
	Obtain answer <i>a</i> =6	A1
		[2]
(ii)	Substitute 6 for a and either show $f(x) = 0$ or divide by $(x - 2)$ obtaining a	
	remainder of zero	B1
EITHER:	State or imply $(x + 1)(x - 2) = x^2 - x - 2$	B 1
	Attempt to find another quadratic factor by division or inspection	M1
	State factor $(x^2 + x - 3)$	A1
OR:	Obtain $x^3 + 2x^2 - 2x - 3$ after division by $x + 1$, or $x^3 - x^2 - 5x + 6$	
	after division by $x - 2$	B1
	Attempt to find a quadratic factor by further division by relevant divisor	
	or by inspection	M1
	State factor $(x^2 + x - 3)$	A1
		[4]

Q18.

4	State or obtain $16 - 20 + 2a + b = 0$	B1	
	Substitute $x = -1$ and equate to -6	M1	
	Obtain a 3-term equation in any correct form	A1	
	Solve a relevant pair of equations, obtaining a or b	M1	
	Obtain $a = 1$ and $b = 2$	A1	5

Q19.

2	 Subttitute x = 1 and evaluate expression 	MJ	
	Obtain asswer 8	At	2
	(iii) Commence division by $x^2 + x - 1$ and obtain quotient of the form $x + k$	M1	
	Obtain quotient a + 1	-AI	
	Obtaso remainder 2x + 4	Aï	
	Correctly identify the quotient and remainder	ALC	4

Q20.

(i)	Substitute	$x = \frac{1}{2}$ and equate to zero	ML	
	Obtain an	swer $a = -3$	Al	2
(11)	At any sta	ige, state that $x = \frac{1}{2}$ is a solution	BI	
	EITHER:	Attempt division by $2x-3$ reaching a partial quotient of $2x^2+kx$	MI	
		Obtain quadratic factor 2x2+3x+1	Al	
		Obtain solutions $x = -1$ and $x = -\frac{1}{2}$	A1	
	OR:	Obtain solution $x = -I$ by trial and error or inspection	B1	
		Obtain solution $x = -\frac{1}{2}$ similarly	B2	4
		Obtain an (ii) At any sta EITHER: OR:	Obtain solutions $x = -1$ and $x = -\frac{1}{2}$ OR: Obtain solution $x = -1$ by trial and error or inspection	Obtain answer $a=-3$ (ii) At any stage, state that $x=\frac{3}{2}$ is a solution B1 EITHER: Attempt division by $2x-3$ reaching a partial quotient of $2x^2+kx$ M1 Obtain quadratic factor $2x^2+3x+1$ Obtain solutions $x=-1$ and $x=-\frac{1}{2}$ A1 OR: Obtain solution $x=-1$ by trial and error or inspection Obtain solution $x=-\frac{1}{2}$ similarly B2 [If an attempt at the quadratic factor is made by inspection, the M1 is earned if it reaches an

Q21.

5 (i) Substitute
$$x = -2$$
 and equate to zero
Obtain answer $a = 3$

A1 [2]

(ii) At any stage state that $x = -2$ is a solution
EITHER: Attempt division by $x + 2$ and reach a partial quotient of $3x^2 + kx$
M1
Obtain quadratic factor $3x^2 + 2x - 1$
A1
Obtain solutions $x = -1$ and $x = \frac{1}{3}$

A1

OR: Obtain solution $x = -1$ by trial or inspection
Obtain solution $x = \frac{1}{3}$ similarly

B2 [4]

Q22.

2 (i) Substitute x = -2 and equate result to zero, or divide by x + 2 and equate constant remainder to zero

Obtain answer a = -13

(ii) Obtain quadratic factor 2x² - 5x - 3

Obtain linear factor 2x + 1

Obtain linear factor x -3

[Condone omission of repetition that x + 2 is a factor.]

[If linear factors 2x + 1, x - 3 obtained by remainder theorem or inspection, award B2 + B1.]

Q23.

3	(i)	Substitute	$x = -\frac{1}{2}$ and equate to zero	M1	
		Obtain a =	= -11	A1	[2]
	(ii)	EITHER:	Attempt division by $2x + \frac{1}{2}$ reaching a partial quotient $2x^2 - 5x$	M1	
			Obtain quadratic factor $2x^2 - 5x - 3$	A1	
			Obtain complete factorisation $(2x+1)^2(x-3)$	A1 + A1	
		OR:	Obtain factor $(x-3)$ by inspection or factor theorem	B2	
			Attempt division by $(x-3)$ reaching a partial quotient $4x^2 + 4x$	M1	
			Obtain complete factorisation $(2x+1)^2(x-3)$	A1	[4]

Q24.

5	(i)	Substitute $x = -1$ or $x = 2$ and equate to zero	M1	
		Obtain a correct equation, e.g. $-a + b + 5 + 2 = 0$	A1	
		Obtain a second correct equation, e.g. $8a + 4b - 10 + 2 = 0$	A1	
		Solve for a or b	M1	
		Obtain $a = 3$ and $b = -4$	A1	[5]
	(ii)	Substitute for a and b and attempt division by $(x + 1)(x - 2)$ or attempt third factor by	,	

inspection M1 Obtain answer 3x - 1 A1

[2]

Q25.

7	(i)	Substitute x Obtain a co Solve a rele	a = 1, equate to zero and obtain a correct equation in any form $a = 2$ and equate to 10 recet equation in any form evant pair of equations for a or for b $a = 12$	B1 M1 A1 M1 A1	[5]
	(ii)		e, state that $x = 1$ is a solution Attempt division by $x - 1$ and reach a partial quotient of $3x^2 + 5x$ Obtain quotient $3x^2 + 5x - 12$ Obtain solutions $x = -3$ and $x = \frac{4}{3}$	B1 M1 A1	
		OR:	Obtain solution $x = -3$ by trial and error or inspection Obtain solution $x = \frac{4}{3}$	B1 B2	

[If an attempt at the quadratic factor is made by inspection, the M1 is earned if it reaches an unknown factor of $3x^2 + 5x + \lambda$ and an equation in λ] [4]

Q26.

3		(i)	Substitute $x = -1$ OR $x = 2$ correctly Equate remainders to obtain correct equation $5 - a = 26 + 2a$ or equivalent Obtain $a = -7$	M1 Al A1	[3]
		(ii)	Attempt division by $x - 1$ and reach a partial quotient of $x^2 + kx$ Obtain quotient $x^2 + 5x - 2$ EITHER Show remainder is zero OR substitute $x = 1$ to obtain zero	M1 A1 B1	[3]
Q2	7.				
5	(i)	Subst	itute $x = \frac{1}{2}$ and equate to 10	M1	
		Obtai	n answer $a = -16$ r show that $f(3) = 0$ or divide by $(x - 3)$ obtaining a remainder of zero	A1 B1	[3]
		Atten	y stage state that $x = 3$ is a solution apt division by $(x - 3)$ reaching a partial quotient of $4x^2 + kx$ in quadratic factor $4x^2 - 4x - 3$	B1 M1 A1	
		Obtai	n solutions $x = \frac{3}{2}$ and $x = -\frac{1}{2}$	A 1	
			M1A1√ if value of 'a' incorrect		[4]
Q2	8.				
7	(i)	Sul Ob So	bstitute $x = -2$, equate to zero and obtain a correct equation in any form bstitute $x = -1$ and equate to 12 btain a correct equation in any form live a relevant pair of equations for a or b btain $a = 2$ and $b = 6$	B1 M1 A1 M1 A1	[5]
	(ii	Ob [Co	tempt division by $x + 2$ and reach a partial quotient of $2x^2 - 7x$ stain quotient $2x^2 - 7x + 3$ stain linear factors $2x - 1$ and $x - 3$ condone omission of repetition that $x + 2$ is a factor.)	M1 A1 A1	
			linear factors $2x - 1$, $x - 3$ obtained by remainder theorem or inspection, award B2 + B1 C. M1A1 \sqrt{i} if a , b not both correct	.]	[3]
Q2	9.				
6	(i)	Obta Obta Solv	stitute $x = 1$ or $x = -2$ and equate to zero ain a correct equation in any form with powers of x values calculated ain a second correct equation in any form we a relevant pair of equations for a or for b ain $a = 3$ and $b = -5$	M1 A1 A1 M1 A1	[5]
	(ii)	Obta	empt division by $x^2 + x - 2$, or equivalent, and reach a partial quotient of $x^2 + kx$ ain partial quotient $x^2 + 2x$ ain $x^2 + 2x - 1$ with no errors seen M1A1 $$ if 'a' and/or 'b' incorrect	M1 A1 A1	[3]

Q30.

7	(i)	Substitute $x = -1$, equate to zero and obtain a correct equation in any form	B1	
		Substitute $x = 3$ and equate to 12	M1	
		Obtain a correct equation in any form	A1	
		Solve a relevant pair of equations for a or for b	M1	
		Obtain $a = -4$ and $b = 6$	A1	[5]
	(ii)	Attempt division by $x^2 - 2$ and reach a partial quotient of $2x - k$	M1	
		Obtain quotient $2x-4$	A1	
		Obtain remainder -2	A1	[3]

Q31.

3	(i)	Attempt division by $x^2 - 3x + 2$ or equivalent, and reach a partial quotient of $x^2 + kx$ Obtain partial quotient $x^2 - x$	M1 A1	
		Obtain $x^2 - x - 2$ with no errors seen	A1	[3]
	(ii)	Correct solution method for either quadratic e.g. factorisation One correct solution from solving quadratic or inspection All solutions $x = 2$, $x = 1$ and $x = -1$ given and no others	M1 B1 A1	[3]

Q32.

4	(i)	Substitute $x = 3$ and equate to $14 (9a + 3b + 35 = 14)$	M1
		Substitute $x = -2$ and equate to 24 $(4a - 2b = 24)$	M1
		Obtain a correct equation in any form	A 1
		Solve a relevant pair of equations for a or for b	M1
		Obtain $a = 1$ and $b = -10$	A1 [5]

© Cambridge International Examinations 2013

Pag	e 5	Mark Scheme	Syllabus	Paper	
		GCE AS LEVEL – October/November 2013	9709	21	
(ii) Atte	mpt division by $x^2 + 2x - 8$ and reach a partial quotient of	x-k	M1	
	Obta	ain quotient $x-1$ with no errors seen (can be done by observable)	vation)	A1	
	Corr	ect solution method for quadratic e.g. factorisation		M1	
	Alls	solutions $x = 1$, $x = 2$ and $x = -4$ given and no others CWO		A1	[4]

Q33.

4		(Substitute $x = 3$ or $x = -2$ and equate to zero Obtain a correct equation in any form Obtain a second correct equation in any form Solve a relevant pair of equations for a or for b Obtain $a = 4$ and $b = -3$	M1 A1 A1 M1 A1	[5]
	([Attempt division by $x + 2$ (or $x - 3$) and obtain partial quotient of $ax^2 + kx$ Obtain linear factors $4x + 1$, $x + 2$ and $x - 3$ [If linear factor $4x + 1$ obtained by remainder theorem or inspection, award B2]	M1 A1	703
		I	[If linear factor $4x + 1$ obtained by division by $x^2 - x - 6$, award M1 A1]		[2]
		1	Alternative Method: Attempt to form identity $(x^2 - x - 6)(rx + s) \equiv ax^3 + bx^3 - 25x - 6$ Attempt to equate like terms Leads to $s = 1$ B1, $r = 4$ A1, $b = -3$ A1, $a = 4$ Obtain linear factors $4x + 1$, $x + 2$ and $x - 3$	M1 M1 A1 A1	
Q34.					
3	(i)		de at least as far as x term in quotient, use synthetic division correctly or make use of lentity	M1	
		Obta	\sin at least $6x^2 - x$	A1	
		Obta	ain quotient $6x^2 - x - 2$ and confirm remainder is 7 (AG)	A1	[3]

Q35.

(may be implied)

Obtain -20 (or equivalent)

Obtain two of the roots -2, 2, $-\frac{1}{2}$, $\frac{2}{3}$

Obtain remaining two roots and no others

6	(i)	Substitute -2 and equate to zero, or divide and equate remainder to zero Obtain $a = 12$	M1 A1	[2]
	(ii)	Carry out division, or equivalent, at least as far as x^2 and x terms in quotient	M1	
		Obtain $x^2 - 2x + 6$	A1	
		Calculate discriminant of a 3 term quadratic quotient (or equivalent)	DM1	

Conclude by referring to, or implying, root -2 and no root from quadratic factor

(ii) State equation in form $(x^2 - 4)(6x^2 + kx - 2) = 0$, any constant k

M1

A1

A1

A1

A1

[5]

[3]

Q36.

5	(i)	State $-40 + 4a + b = 0$ or equivalent	B1	
		State $-135 + 9a + b = 0$ or equivalent	B1	
		Solve a pair of linear simultaneous equations	M1	
		Obtain $a = 19$ and $b = -36$	A1	[4]
	(ii)	Identify $5x - 6$ as a factor	B 1	
		State $(x+2)(x+3)(5x-6)$	B1	
		State or imply $5^y = \frac{6}{5}$, following a positive value from factorisation	B 1√	
		Apply logarithms and use power law Obtain 0.113 only	M1 A1	[5]

P3 (variant1 and 3)

Q1.

4	(i)	Verify that $-96 + 100 + 8 - 12 = 0$ Attempt to find quadratic factor by division by $(x + 2)$, reaching a partial quotient	B1	
		$12x^2 + kx$, inspection or use of an identity Obtain $12x^2 + x - 6$ State $(x + 2)(4x + 3)(3x - 2)$ [The M1 can be earned if inspection has unknown factor $Ax^2 + Bx - 6$ and an equation in A and/or B or equation $12x^2 + Bx + C$ and an equation in B and/or C.]	M1 A1 A1	[4]
	(ii)	State $3^y = \frac{2}{3}$ and no other value Use correct method for finding y from equation of form $3^y = k$, where $k > 0$	B1 M1	
		Obtain –0.369 and no other value	A1	[3]

Q2.

5 (i) Substitute $x = \frac{1}{2}$ and equate to zero, or divide, and obtain a correct equation, e.g. $\frac{1}{8}a + \frac{1}{4}b + \frac{5}{2} - 2 = 0$

Substitute x = 2 and equate result to 12, or divide and equate constant remainder to 12 M1 Obtain a correct equation, e.g. 8a + 4b + 10 - 2 = 12 A1

B₁

[5]

Solve for a or for b M1
Obtain a = 2 and b = -3

(ii) Attempt division by 2x - 1 reaching a partial quotient $\frac{1}{2}\alpha x^2 + kx$ M1

Obtain quadratic factor $x^2 - x + 2$ A1 [2]

Obtain quadratic factor $x^2 - x + 2$ [The M1 is earned if inspection has an unknown factor $Ax^2 + Bx + 2$ and an equation in A and/or B, or an unknown factor of $\frac{1}{2}ax^2 + Bx + C$ and an equation in B and/or C.]

Q3.

3	(i)	Substitute $x = 2$ and equate to zero, or divide by $x - 2$ and equate constant remainder to zero, or equivalent Obtain $a = 4$		
	(ii)	(a) Find further (quadratic or linear) factor by division, inspection or factor theorem or equivalent Obtain $x^2 + 2x - 8$ or $x + 4$ State $(x-2)^2(x+4)$ or equivalent	M1 A1 A1	[3]
		(b) State any two of the four (or six) roots State all roots ($\pm \sqrt{2}$, $\pm 2i$), provided two are purely imaginary	B1√ B1√	[2]
1	 Q4. Carry out division or equivalent at least as far as two terms of quotient Obtain quotient 2x-4 Obtain remainder 8 Q5. 			[3]
5	(i)	Substitute $x = -\frac{1}{2}$, or divide by $(2x + 1)$, and obtain a correct equation, e.g. $a - 2b + 8 = 0$	B1	
		Substitute $x = \frac{1}{2}$ and equate to 1, or divide by $(2x - 1)$ and equate constant remainder to 1	M1	
		Obtain a correct equation, e.g. $a + 2b + 12 = 0$ Solve for a or for b Obtain $a = -10$ and $b = -1$	A1 M1 A1	[5]
	(ii)	Divide by $2x^2 - 1$ and reach a quotient of the form $4x + k$ Obtain quotient $4x - 5$	M1 A1	
		Obtain remainder $3x - 2$	A1	[3]

Q6.

10	(i)	Attempt to solve for m the equation $p(-2) = 0$ or equivalent Obtain $m = 6$	M1 A1	[2]
		Alternative: Attempt $p(z) \div (z+2)$, equate a constant remainder to zero and solve for m . Obtain $m=6$		
	(ii)	(a) State $z = -2$ Attempt to find quadratic factor by inspection, division, identity, Obtain $z^2 + 4z + 16$ Use correct method to solve a 3-term quadratic equation Obtain $-2 \pm 2\sqrt{3}i$ or equivalent	B1 M1 A1 M1	[5]
		(b) State or imply that square roots of answers from part (ii)(a) needed Obtain $\pm i\sqrt{2}$ Attempt to find square root of a further root in the form $x+iy$ or in polar form Obtain $a^2-b^2=-2$ and $ab=(\pm)\sqrt{3}$ following their answer to part (ii)(a) Solve for a and b Obtain $\pm (1+i\sqrt{3})$ and $\pm (1-i\sqrt{3})$	M1 A1 M1 A1√ M1 A1	[6]
Q7.				
3	(i)	EITHER: Attempt division by $x^2 - x + 1$ reaching a partial quotient of $x^2 + kx$ Obtain quotient $x^2 + 4x + 3$ Equate remainder of form lx to zero and solve for a , or equivalent Obtain answer $a = 1$ OR: Substitute a complex zero of $x^2 - x + 1$ in $p(x)$ and equate to zero	M1 A1 M1 A1	
		Obtain a correct equation in a in any unsimplified form Expand terms, use $i^2 = -1$ and solve for a Obtain answer $a = 1$ [SR: The first M1 is earned if inspection reaches an unknown factor $x^2 + Bx + C$ and an equation in B and/or C , or an unknown factor $Ax^2 + Bx + 3$ and an equation in A and/or B . The second M1 is only earned if use of the equation $a = B - C$ is seen or implied.]	A1 M1 A1	[4]
	(ii)	State answer, e.g. $x = -3$ State answer, e.g. $x = -1$ and no others	B1 B1	[2]

Q8.

7	(i)	Substitute $x = \frac{1}{2}$ and equate to zero		
		or divide by $(2x-1)$, reach $\frac{a}{2}x^2 + kx +$ and equate remainder to zero		
		or by inspection reach $\frac{a}{2}x^2 + bx + c$ and an equation in b/c		
		or by inspection reach $Ax^2 + Bx + a$ and an equation in A/B	M1	
		Obtain $a = 2$	A1	
		Attempt to find quadratic factor by division or inspection or equivalent	M1	
		Obtain $(2x-1)(x^2+2)$	Alcwo	[4]
	(ii)	State or imply form $\frac{A}{2x-1} + \frac{Bx+C}{x^2+2}$, following factors from part (i)	B 1√	
		Use relevant method to find a constant	M1	
		Obtain $A = -4$, following factors from part (i)	A1√	
		Obtain $B = 2$	A1	
		Obtain C = 5	A1	

Q9.

3	(i)	Substitute -2 and equate to zero or divide by $x + 2$ and equate remainder to zero or use			
		−2 in synthetic division	M1		
		Obtain $a = -1$	A1	[2]	

(ii) Attempt to find quadratic factor by division reaching
$$x^2 + kx$$
, or inspection as far as $(x+2)(x^2+Bx+c)$ and equations for one or both of B and C , or $(x+2)(Ax^2+Bx+7)$ and equations for one or both of A and B .

Obtain x^2-3x+7

Use discriminant to obtain -19 , or equivalent, and **confirm one root** cwo

A1 [3]

Q10.

3 Substitute
$$x = -\frac{1}{3}$$
, equate result to zero or divide by $3x + 1$ and equate the remainder to zero

and obtain a correct equation, e.g. $-\frac{1}{27}a + \frac{1}{9}b - \frac{1}{3} + 3 = 0$	B 1	
Substitute $x = 2$ and equate result to 21 or divide by $x - 2$ and equate constant remainder to 21	M1	
Obtain a correct equation, e.g. $8a + 4b + 5 = 21$	A1	
Solve for a or for b	M1	
Obtain $a = 12$ and $b = -20$	A1	[5]

Q11.

3	(i)	Either	Equate $p(-1)$ or $p(-2)$ to zero or divide by $(x+1)$ or $(x+2)$ and	M*1	
			equate constant remainder to zero.		
			Obtain two equations $a - b = 6$ and $4a - 2b = 34$ or equivalents	A1	
			Solve pair of equations for a or b	DM*1	
			Obtain $a = 11$ and $b = 5$	A1	
		Or	State or imply third factor is $4x-1$	B1	
			Carry out complete expansion of $(x+1)(x+2)(4x-1)$ or	M1	
			(x+1)(x+2)(Cx+D)		
			Obtain $a = 11$	A1	
			Obtain $b = 5$	A1	[4]
	(ii)	Use div	ision or equivalent and obtaining linear remainder	M1	
	13. 1		quotient $4x + a$, following their value of a	A1√	
		Indicate	e remainder $x-13$	A1	[3]