Q1.

9 (i) State or imply partial fractions of the form
$$\frac{A}{1-2x} + \frac{B}{2+x} + \frac{C}{(2+x)^2}$$

Obtain one of the values
$$A = 1, B = 1, C = -2$$

[The form
$$\frac{A}{1-2x} + \frac{Dx + E}{(2+x)^2}$$
, where $A = 1, D = 1, E = 0$, is acceptable

scoring B1M1A1A1A1 as above.]

(ii) Use correct method to obtain the first two terms of the expansion of $(1-2x)^{-1}$, $(2+x)^{-1}$,

$$(2+x)^{-2}$$
, $(1+\frac{1}{2}x)^{-1}$, or $(1+\frac{1}{2}x)^{-2}$

Obtain correct unsimplified expansions up to the term in x^2 of each partial fraction $A1\sqrt{+}A1\sqrt{+}A1\sqrt{-}$

Obtain answer
$$1 + \frac{9}{4}x + \frac{15}{4}x^2$$
, or equivalent A1 [5]

[Symbolic binomial coefficients, e.g. $\binom{-1}{1}$, are not sufficient for the M1. The f.t. is on A, B, C.]

[For the A, D, E form of partial fractions, give M1A1 $\sqrt{A1}\sqrt{1}$ for the expansions then, if $D \neq 0$, M1 for multiplying out fully and A1 for the final answer.]

[In the case of an attempt to expand $(4+5x-x^2)(1-2x)^{-1}(2+x)^{-2}$, give M1A1A1 for the expansions, M1 for multiplying out fully, and A1 for the final answer.]

[SR: If B or C omitted from the form of fractions, give B0M1A0A0A0 in (i); M1A1 $\sqrt{\text{A1}}\sqrt{\text{in (ii)}}$.]

[SR: If D or E omitted from the form of fractions, give B0M1A0A0A0 in (i); M1A1 $\sqrt{\text{A1}}\sqrt{\text{in (ii)}}$.]

Q2.

1 Either: Obtain
$$1 + \frac{1}{3}kx$$
, where $k = \pm 6$ or ± 1

Obtain
$$1-2x$$

Obtain
$$-4x^2$$

Obtain
$$-\frac{40}{3}x^3$$
 or equivalent A1

Or: Differentiate expression to obtain form
$$k(1-6x)^{-\frac{2}{3}}$$
 and evaluate $f(0)$ and $f'(0)$

Obtain
$$f'(x) = -2(1-6x)^{-\frac{2}{3}}$$
 and hence the correct first two terms $1-2x$

Obtain
$$f''(x) = -8(1-6x)^{-\frac{5}{3}}$$
 and hence $-4x^2$

Obtain
$$f'''(x) = -80(1 - 6x)^{-\frac{8}{3}}$$
 and hence $-\frac{40}{3}x^3$ or equivalent A1 [4]

Q3.

2	(i)	Either	Obtain correct (unsimplified) version of x or x^2 term from $(1-4x)^{\frac{1}{2}}$	M1	
			Obtain $1 + 2x$ Obtain $+ 6x^2$	A1 A1	
		<u>Or</u>	Differentiate and evaluate $f(0)$ and $f'(0)$ where $f'(x) = k(1-4x)^{-\frac{1}{2}}$	M1	
			Obtain $1 + 2x$ Obtain $+ 6x^2$	A1 A1	[3]
	(ii)	Combin Obtain	the both x^2 terms from product of $1 + 2x$ and answer from part (i)	M1 A1	[2]

Q4.

1 EITHER: Obtain a correct unsimplified version of the x or x^2 term of the expansion of

$$(4+3x)^{-\frac{1}{2}}$$
 or $(1+\frac{3}{4}x)^{-\frac{1}{2}}$ M1

State correct first term
$$\frac{1}{2}$$

Obtain the next two terms
$$-\frac{3}{16}x + \frac{27}{256}x^2$$
 A1 + A1

OR: Differentiate and evaluate
$$f(0)$$
 and $f'(0)$, where $f'(x) = k(4+3x)^{-\frac{3}{2}}$ M1

State correct first term
$$\frac{1}{2}$$

Obtain the next two terms
$$-\frac{3}{16}x + \frac{27}{256}x^2$$
 A1 + A1 [4]

[Symbolic coefficients, e.g. $\begin{pmatrix} -\frac{1}{2} \\ 2 \end{pmatrix}$ are not sufficient for the M or B mark.]

Q5.

2 Obtain
$$1-x$$
 as first two terms of $(1+2x)^{-\frac{1}{2}}$ B1

Obtain $+\frac{3}{2}x^2$ or unsimplified equivalent as third term of $(1+2x)^{-\frac{1}{2}}$ B1

Multiply $1+3x$ by attempt at $(1+2x)^{-\frac{1}{2}}$, obtaining sufficient terms

Obtain final answer $1+2x-\frac{3}{2}x^2$ A1 [4]

Q6.

3 State or imply correct form
$$\frac{A}{x} + \frac{Bx + C}{x^2 + 1}$$

Use any relevant method to find at least one constant

Obtain $A = 2$

Obtain $B = 5$

Obtain $C = -3$

A1

A1

[5]

Q7.

- 8 (i) State or imply partial fractions are of the form $\frac{A}{x+1} + \frac{B}{(x+1)^2} + \frac{C}{3x+2}$
 - Use any relevant method to obtain a constant M1 Obtain one of the values A = 1, B = 2, C = -3 A1
 - Obtain a second value A1
 Obtain the third value A1 [5]
 - (ii) Use correct method to obtain the first two terms of the expansion of $(x+1)^{-1}$, $(x+1)^{-2}$, $(3x+2)^{-1}$ or $(1+\frac{3}{2}x)^{-1}$ M1

Obtain correct unsimplified expansion up to the term in x^2 of each partial

fraction A1
$$\sqrt{1}$$
 + A1 $\sqrt{1}$ + A1 $\sqrt{1}$ Obtain answer $\frac{3}{2} - \frac{11}{4}x + \frac{29}{8}x^2$, or equivalent A1 [5]

[Symbolic binomial coefficients, e.g. $\binom{-1}{1}$, are not sufficient for the first M1. The f.t. is on A, B, C.]

[The form
$$\frac{Dx+E}{(x+1)^2} + \frac{C}{3x+2}$$
, where $D=1, E=3, C=-3$, is acceptable. In part (i) give

BIMIAIAIAI.

In part (ii) give M1A1 $\sqrt{\text{A1}}\sqrt{\text{for the expansions}}$, and, if $DE \neq 0$, M1 for multiplying out fully and A1 for the final answer.]

[If B or C omitted from the form of fractions, give B0M1A0A0A0 in (i); M1A1 $\sqrt{\text{A1}}\sqrt{\text{in (ii)}}$, max 4/10]

[If \vec{D} or \vec{E} omitted from the form of fractions, give B0M1A0A0A0 in (i); M1A1 $\sqrt{A1}\sqrt{A1}\sqrt{A1}$ in (ii), max 4/10]

[In the case of an attempt to expand $(5x + 3)(x + 1)^{-2}(3x + 2)^{-1}$, give M1A1A1 for the expansions, M1 for multiplying out fully, and A1 for the final answer.]

[Allow use of Maclaurin, giving M1A1 $\sqrt{\text{A1}}\sqrt{\text{for differentiating and obtaining }f(0)} = \frac{3}{2}$ and

$$f'(0) = -\frac{11}{4}$$
, A1 $\sqrt{1}$ for $f''(0) = \frac{29}{4}$, and A1 for the final answer (the f.t. is on A, B, C if used).

Q8.

8	(i)	State or imply the form $\frac{A}{1+x} + \frac{Bx+C}{1+2x^2}$	B1				
		Use any relevant method to evaluate a constant	M1				
		Obtain one of $A = -1$, $B = 2$, $C = 1$	A1				
		Obtain a second value	A1				
		Obtain the third value	A1	[5]			
	(ii)	Use correct method to obtain the first two terms of the expansion of $(1+x)^{-1}$ or					
		$(1+2x^2)^{-1}$	M1				
		Obtain correct expansion of each partial fraction as far as necessary	$A1\sqrt{+A1}\sqrt{-}$				
		Multiply out fully by $Bx + C$, where $BC \triangleright 0$	M1				
		Obtain answer $3x - 3x^2 - 3x^3$	A1	[5]			
		[Symbolic binomial coefficients, e.g., $\begin{pmatrix} -1\\1 \end{pmatrix}$ are not sufficient for the first M1. The first M1.	£t.				
		is on A, B, C.]					
		[If B or C omitted from the form of fractions, give B0M1A0A0A0 in (i); M1A1√A1√ in (ii), max 4/10.]					
		[If a constant D is added to the correct form, give M1A1A1A1 and B1 if and only if $D = 0$ is stated.]					
		[If an extra term $D/(1+2x^2)$ is added, give B1M1A1A1, and A1 if $C+D=1$ is resolved to $1/(1+2x^2)$.]					
		[In the case of an attempt to expand $3x(1+x)^{-1}(1+2x^2)^{-1}$, give M1A1A1 for the					
	expansions up to the term in x^2 , M1 for multiplying out fully, and A1 for the final						

Q9.

1 Obtain
$$1-6x$$
 B1
State correct unsimplified x^2 term. Binomial coefficients must be expanded. M1
Obtain ... $+24x^2$ A1 [3]

[For the identity $3x = (1 + x + 2x^2 + 2x^3)(a + bx + cx^2 + dx^3)$ give M1A1; then M1A1 for using a relevant method to find two of a = 0, b = 3, c = -3 and d = -3; and then A1

for the final answer in series form.]

Q10.

1 Either Obtain correct unsimplified version of x or x^2 term in expansion of $(2+x)^{-2}$ or $(1+\frac{1}{2}x)^{-2}$	
Correct first term 4 from correct work B1	
Obtain –4x A1	
Obtain $+3x^2$ A1	
Or Differentiate and evaluate $f(0)$ and $f'(0)$ where $f'(x) = k(2+x)^{-3}$ M1	
State correct first term 4 B1	
Obtain –4x A1	
Obtain + $3x^2$	[4]

Q11.

4 (i) Obtain correct unsimplified terms in x and x^3 Equate coefficients and solve for aObtain final answer $a = \sqrt{2}$, or exact equivalent

A1 [4]

(ii) Use correct method and value of a to find the first two terms of the expansion $(1 + ax)^{-2}$ M1

Obtain $1 - \sqrt{2x}$, or equivalent

A1 $\sqrt[4]$ Obtain term $\sqrt[3]{2}$ Symbolic coefficients, e.g. a, are not sufficient for the first B marks]

Q12.

[The f.t. is solely on the value of a.]

9 (i) State or imply form $\frac{A}{3-x} + \frac{Bx+C}{1+x^2}$ BI

Use relevant method to determine a constant M1

Obtain
$$A = 6$$
 A1

Obtain
$$B = -2$$
 A1
Obtain $C = 1$ A1 [5]

Use correct method to obtain first two terms of expansion

of
$$(3-x)^{-1}$$
 or $\left(1-\frac{1}{3}x\right)^{-1}$ or $\left(1+x^2\right)^{-1}$

Obtain
$$\frac{A}{3} \left(1 + \frac{1}{3}x + \frac{1}{9}x^2 + \frac{1}{27}x^3 \right)$$
 A1

Obtain
$$(Bx + C)(1 - x^2)$$

Obtain sufficient terms of the product $(Bx + C)(1 - x^2)$, $B, C \neq 0$ and add the

Obtain final answer
$$3 - \frac{4}{3}x - \frac{7}{9}x^2 + \frac{56}{27}x^3$$

M1

[5]

Or Use correct method to obtain first two terms of expansion

of
$$(3-x)^{-1}$$
 or $\left(1-\frac{1}{3}x\right)^{-1}$ or $\left(1+x^2\right)^{-1}$

Obtain
$$\frac{1}{3} \left(1 + \frac{1}{3}x + \frac{1}{9}x^2 + \frac{1}{27}x^3 \right)$$

Obtain
$$(1-x^2)$$
 A1
Obtain sufficient terms of the product of the three factors M1

Obtain final answer
$$3 - \frac{4}{3}x - \frac{7}{9}x^2 + \frac{56}{27}x^3$$
 A1 [5]

Q13.

7 (i) State or imply partial fractions are of the form
$$\frac{A}{x-2} + \frac{Bx+C}{x^2+3}$$

Use a relevant method to determine a constant Ml

Obtain one of the values
$$A = -1$$
, $B = 3$, $C = -1$
Al
Obtain a second value

(ii) Use correct method to obtain the first two terms of the expansions of $(x-2)^{-1}$,

$$\left(1 - \frac{1}{2}x\right)^{-1}$$
, $\left(x^2 + 3\right)^{-1}$ or $\left(1 + \frac{1}{3}x^2\right)^{-1}$

Substitute correct unsimplified expansions up to the term in x^2 into each partial fraction

Multiply out fully by Bx + C, where $BC \neq 0$ M1

Obtain final answer
$$\frac{1}{6} + \frac{5}{4}x + \frac{17}{72}x^2$$
, or equivalent A1 [5]

[Symbolic binomial coefficients, e.g. $\binom{-1}{1}$ are not sufficient for the M1. The f.t. is

on A, B, C.]

[In the case of an attempt to expand $(2x^2-7x-1)(x-2)^{-1}(x^2+3)^{-1}$, give MIAIAI for the expansions, M1 for multiplying out fully, and A1 for the final answer.] [If B or C omitted from the form of partial fractions, give B0M1A0A0A0 in (i); M1A1 A1 in (ii)]

Q14.

8	(i)	Either	State or imply form $\frac{A}{1+x} + \frac{B}{(1+x)^2} + \frac{C}{2-3x}$	B1	
			Use any relevant method to find at least one constant	M1	
			Obtain $A = -1$	Al	
			Obtain $B = 3$	Al	
			Obtain $C = 4$	Al	
		<u>Or</u>	State or imply form $\frac{A}{1+x} + \frac{Bx}{(1+x)^2} + \frac{C}{2-3x}$	B1	
			Use any relevant method to find at least one constant	M1	
			Obtain $A = 2$	A1	
			Obtain $B = -3$	Al	
			Obtain $C = 4$	Al	
		<u>Or</u>	State or imply form $\frac{Dx+E}{(1+x)^2} + \frac{F}{2-3x}$	B1	
			Use any relevant method to find at least one constant	M1	
			Obtain $D = -1$	A1	
			Obtain $E = 2$	Al	
			Obtain $F = 4$	A1	[5]

(ii)	Either	Use correct method to find first two terms of expansion of $(1+x)^{-1}$ or		
		$(1+x)^{-2}$ or $(2-3x)^{-1}$ or $\left(1-\frac{3}{2}x\right)^{-1}$	MI	
		Obtain correct unsimplified expansion of first partial fraction up to x^2 term	A1√	
		Obtain correct unsimplified expansion of second partial fraction up to x^2 term Obtain correct unsimplified expansion of third partial fraction up to x^2 term	A1√ A1√	
			Al	
		Obtain final answer $4 - 2x + \frac{25}{2}x^2$	Ai	
	Or 1	Use correct method to find first two terms of expansion of $(1+x)^{-2}$		
		or $(2-3x)^{-1}$ or $\left(1-\frac{3}{2}x\right)^{-1}$	Ml	
		Obtain correct unsimplified expansion of first partial fraction up to x^2 term	A1√	
		Obtain correct unsimplified expansion of second partial fraction up to x^2 term Expand and obtain sufficient terms to obtain three terms	A1√ M1	
		Obtain final answer $4-2x+\frac{25}{2}x^2$		
		Obtain final answer $4-2x+\frac{1}{2}x$	Al	
	Or 2	(expanding original expression)		
		Use correct method to find first two terms of expansion of $(1+x)^{-2}$		
		or $(2-3x)^{-1}$ or $\left(1-\frac{3}{2}x\right)^{-1}$	MI	
		Obtain correct expansion $1 - 2x + 3x^2$ or unsimplified equivalent	Al	
		Obtain correct expansion $\frac{1}{2} \left(1 + \frac{3}{2}x + \frac{9}{4}x^2 \right)$ or unsimplified equivalent	Al	
		Expand and obtain sufficient terms to obtain three terms	MI	
		Obtain final answer $4-2x+\frac{25}{2}x^2$	Al	
	Or 3	(McLaurin expansion)		
		Obtain first derivative $f'(x) = (1+x)^{-2} - 6(1+x)^{-3} + 12(2-3x)^{-2}$	MI	
		Obtain $f'(0) = 1 - 6 + 3$ or equivalent	Al	
		Obtain $f''(0) = -2 + 18 + 9$ or equivalent	Al	
		Use correct form for McLaurin expansion	MI	
		Obtain final answer $4-2x+\frac{25}{2}x^2$	Al	[5]

Q15.

9 (i) Either State or imply partial fractions are of form $\frac{A}{3-x} + \frac{B}{1+2x} + \frac{C}{(1+2x)^2}$ B1

Use any relevant method to obtain a constant M1

Obtain A = 1

Obtain $B = \frac{3}{2}$

Obtain $C = -\frac{1}{2}$ A1 [5]

Or State or imply partial fractions are of form $\frac{A}{3-x} + \frac{Dx+E}{(1+2x)^2}$

Use any relevant method to obtain a constant M1 Obtain A = 1 A1 Obtain D = 3 A1 Obtain E = 1 A1 [5]

(ii) Obtain the first two terms of one of the expansion of $(3-x)^{-1}$, $\left(1-\frac{1}{3}x\right)^{-1}$

 $(1+2x)^{-1}$ and $(1+2x)^{-2}$

Obtain correct unsimplified expansion up to the term in x^2 of each partial fraction, following in each case the value of A, B, CA1 $^{\wedge}$ A1 $^{\wedge}$

Obtain answer $\frac{4}{3} - \frac{8}{9}x + \frac{1}{27}x^2$ A1 [5]

[If A, D, E approach used in part (i), give M1A1 ↑ for the expansions, M1 for multiplying out fully and A1 for final answer]

Q16.

2 State a correct unsimplified version of the x or x^2 or x^3 term

State correct first two terms 1-xObtain the next two terms $2x^2 - \frac{14}{3}x^3$ A1 + A1

[Symbolic binomial coefficients, e.g. $\binom{-\frac{1}{3}}{3}$ are not sufficient for the M mark.]

Q17.

9 (i) State or imply the form
$$\frac{A}{1-x} + \frac{B}{2-x} + \frac{C}{(2-x)^2}$$

Use a correct method to determine a constant M1

Obtain one of A = 2, B = -1, C = 3

Obtain a second value A1
Obtain a third value A1

[The alternative form $\frac{A}{1-x} + \frac{Dx + E}{(2-x)^2}$, where A = 2, D = 1, E = 1 is marked

B1M1A1A1A1 as above.]

(ii) Use correct method to find the first two terms of the expansion of $(1-x)^{-1}$, $(2-x)^{-1}$, $(2-x)^{-2}$, $(1-\frac{1}{2}x)^{-1}$ or $(1-\frac{1}{2}x)^{-2}$

Obtain correct unsimplified expansions up to the term in x^2 of each partial fraction

Obtain final answer $\frac{9}{4} + \frac{5}{2}x + \frac{39}{16}x^2$, or equivalent

[5]

[Symbolic binomial coefficients, e.g. $\binom{-1}{1}$ are not sufficient for M1. The \checkmark is on A,B,C.]

[For the A,D,E form of partial fractions, give M1 A1 \checkmark A1 \checkmark for the expansions then, if $D \neq 0$, M1 for multiplying out fully and A1 for the final answer.]

[In the case of an attempt to expand $(x^2 - 8x + 9)(1 - x)^{-1}(2 - x)^{-2}$, give M1A1A1 for the expansions, M1 for multiplying out fully, and A1 for the final answer.]