'O' Level Physics Formula Sheet

Measurements				
Base SI Units				
Kg	SI	Unit for mass: Kilogram		
m	SI	Unit for length: metre		
S	SI	Unit for time: second		
А	SI	Unit for current: Ampere		
K	SI	Unit for Temperature: Kelvin		
mol SI		Unit for Amount of substance: molar		
Number Prefix				
n (10 ⁻⁹) na		no		
$\mu (10^{-6})$ mi		cro		
$m(10^{-3})$	mi	lli		
$c(10^{-2})$	ce	nti		
$d(10^{-1})$	de	c1		
$K(10^3)$	K1	10		
M (10 ⁶)	M	ega		
	K	inematics		
Average Speed	$\Delta d = t$	otal distance travelled (area under		
$\mathbf{s} = \Delta \mathbf{a} / \Delta \mathbf{t}$	speed-	unie graph) otal displacement		
A wonogo Vologit	$\Delta x = t$	otal displacement		
Average velocity	$\Delta t = total time taken$			
$\mathbf{v} = \Delta \mathbf{X} / \Delta \mathbf{l}$	$\Delta v = 0$ Veloci	ty (slope of displacement-time graph)		
Acceleration $a = A w/At$	Acceleration (clope of velocity time graph)			
$\mathbf{a} = \Delta \mathbf{v} / \Delta \mathbf{l}$	Acceleration (slope of verocity-time graph)			
$\mathbf{v} = \mathbf{u} + \mathbf{at}$ $\mathbf{v} = \mathbf{ut} + 1/(\mathbf{at}^2)$	u = 1n	inal velocity		
$x = ut + \frac{1}{2} at$ $u^2 = u^2 + 2au$	v = III t - tin			
$\mathbf{v} = \mathbf{u} + 2\mathbf{a}\mathbf{x}$	t = t m			
	a = ac x = di	splacement		
	x = u x b = b a	ight		
$\mathbf{v}_{\mathbf{free fall}} = \sqrt{2gh}$	g = gr	avitational constant = 9.81 m/s^2		
		Dynamics		
Newton's First La	aw	A body continues to stay in its state		
$\sum \vec{F} = 0$ at equilibri	um	of rest or uniform motion in a		
		straight line as long as there is no		
		net force/moment acting on the		
		body.		
Newton's Second	Law	The acceleration of an object is		
F= ma		directly proportional to the net force		
		acting on it and inversely		
		proportional to its mass.		
Newton's Third Law		For every force object A acts		
		on object B, object B will exert an		
		equal and opposite		
		torce on object A giving rise to		
D 11 *		Reaction/Normal Forces		
Resolving forces	0	$F_{\text{vertical}} = F_r$		
$F_{horizontal} = F_r \cos \frac{1}{2}$	θ	A. F		
$F_{vertical} = F_r \sin \theta$)	► ► F _{horizontal}		
Λ	lass,	Weight, Density		
Weight		w = Weight		
$\mathbf{w} = \mathbf{mg}$		m = mass		
		g = gravitational field strength		
Density		$\rho = \text{density}$		
$\rho = \frac{m}{m}$		m = mass		
· V		V = volume		
Turning effect of Force				
	0			
Moment of Force		M = Moment		
Moment of Force M = F d		M = Moment F = force		

Dringinlo of Moment	For a body in rotational			
Frinciple of Moment	For a body in rotational			
Σ Anticiockwise Moment	Sum of ACW Moment – sum of			
-2 Clockwise Moment	Sum of AC w Woment = sum of			
	Cw Moment			
Pressure				
Pressure	P = Pressure			
F	F = Force over area, A			
$\mathbf{P} = \frac{1}{\mathbf{A}}$	A = Area			
Prossure of liquid	$\mathbf{D} = \mathbf{D}\mathbf{r}_{\mathbf{a}\mathbf{c}\mathbf{s}\mathbf{u}\mathbf{r}\mathbf{a}}$			
a column	1 - 1 lessure			
	p = density, h = height of liquid column			
$\mathbf{F} = \mathbf{n}\mathbf{p}\mathbf{g}$	n = neight of liquid column			
g = gravitational field streng				
Energy,	Work and Power			
Work Done	W = work done			
$\mathbf{W} = \mathbf{F}\mathbf{d}$	F= force			
	d= distance in direction of force			
Power	Work done per unit time, t			
$\mathbf{P} = \mathbf{W}/\mathbf{t} = \mathbf{F}\mathbf{v}$				
Kinetic Energy	$E_{\nu} = Kinetic Energy$			
_ 1	m = mass			
$\mathbf{E}_{\mathbf{k}} = \frac{1}{2} \mathbf{m} \mathbf{v}^2$	v = velocity			
Gravitational Potential	g = gravity = 9.81 m/s			
Energy	h = height			
$\mathbf{E}_{m} = mgh$	m = mass			
Concernation of Energy	E. – Total Energy Before			
E = E	$E_1 = Total Energy After$			
$\mathbf{E}_1 = \mathbf{E}_2$	$E_2 = 10$ tai Energy After			
	Energy cannot be created or			
	destroyed. It can only be			
	transformed or converted into other			
	forms.			
Kinetic	Model of Matter			
Ideal Gas Law	P = pressure of fixed mass of gas			
$PV \propto T$	V = volume occupies by fixed mass			
	of gas			
	T = Temperature of gas			
$P_1V_1 = P_2V_2$	Subscript $1 = initial state$			
1 1 1 2 2 2	Subscript $2 - \text{final state}$			
The owner al. I	Properties of Matter			
Inermai F	roperiles of Mailer			
Specific Heat Capacity	c = Specific heat capacity (Energy)			
$\mathbf{E} = \mathbf{m} \mathbf{c} \Delta \mathbf{T}$	required to raise the temperature of			
	1kg of the object by 1°C)			
	m = mass			
T	$\Delta I =$ change in temperature.			
Latent Heat	$L_{fusion} =$ latent heat of fusion (Energy			
For melting,	required to change 1kg of solid to			
$\mathbf{E} = \mathbf{m} \mathbf{L}_{\text{fusion}}$	liquid at the constant temp)			
	$L_{vaporization} = latent heat of$			
For boiling,	vaporization (Energy required to			
$\mathbf{E} = \mathbf{m} \mathbf{L}_{vaporization}$	change 1kg of liquid to gas at the			
	constant temp)			
	m = mass			
General	Wave Properties			
Wave Velocity	v = velocity of a wave			
$\mathbf{v} = f \lambda$	f = frequency			
	$\lambda = wavelength$			
Wave frequency				
	T - Deried			
	$I \equiv Period$			
$\mathbf{I} = \frac{1}{T}$	f = frequency			

	Light	Practi	ical I
Law of Reflection	Normal	Electric Power	P = I
$\Theta_i = \Theta_r$			V =
	$\Theta_i + \Theta_r$	$\mathbf{P} = \mathbf{VI} = \mathbf{V}^2 / \mathbf{R} = \mathbf{I}^2 \mathbf{R}$	$\mathbf{R} = 1$
Θ_i = angle of incidence			I = c
Θ_r = angle of reflection		Electrical Energy	$\mathbf{E} = \mathbf{e}$
Snell's Law (refraction)	Normal	$\mathbf{E} = \mathbf{Pt} = (\mathbf{VI})\mathbf{t}$	$\mathbf{P} = \mathbf{r}$
a: o o a: o	$\left \right\rangle_{\Theta}$ = n, - refractive index 1		$t = t_1$
$n_1 \sin \Theta_i = n 2 \sin \Theta_r$			V = I = c
Ω – angle of incidence		Floot	rom
Θ_i = angle of refraction	Θ_r	Transformer	V -
o _r c	$n_2 = refractive index 2$	$V_{\rm p}$ N _p	V =
Critical angle	Namal	$\frac{VP}{V} = \frac{P}{N}$	I = c
	Normai	(ideal transformer)	Subs
$\sin \Theta_c = \frac{n_2}{2}$	$n_1 = refractive index 1$	$V_{\rm P}I_{\rm P} = V_{\rm s}I_{\rm s}$	Subs
n ₁		Right hand grip	
(special case of Spell's			
(special case of shell s law where $\Theta = 90^{\circ}$)	n mfm stine in day 2		
haw where $O_r = 90^\circ$	$n_2 = refractive index 2$		
Refractive Index	c = speed of light in vacuum.		
$\mathbf{n} = \frac{\mathbf{c}}{\mathbf{c}}$	v = speed of light in medium		
$\mathbf{n} = \frac{1}{V}$	Higher reflective index of a		
((, , , 1)	medium means light travel slower		field
$(n \text{ of air} \approx 1)$	in the medium		GIR
h. d.	M = magnification h = height		
$\mathbf{M} = \frac{\mathbf{n}_1}{\mathbf{h}} = \frac{\mathbf{u}_1}{\mathbf{d}}$	d = distance from lens		
n _o u _o	Subscript $i = image$	Fleming's Right Hand	
	Subscript o = object	Rule	
Curren	nt of Electricity		
Current	Current = rate of flow of charges		magne
$\mathbf{I} = \mathbf{Q} / \Delta t$	Q = Charge		
	t=time		ind
Ohm's Law	V = voltage,		
Resistance $\mathbf{P} = \mathbf{V} / \mathbf{I}$	$\mathbf{K} = \text{resistance}$		
$\mathbf{N} = \mathbf{V} / \mathbf{I}$	1 - current	Fleming's Left Hand	
$\mathbf{R} = oI / A$	f = length of wire	Rule	
$\mathbf{x} = p\mathbf{E}/T$	A = cross sectional area		
D.	C. Circuits		
Kirchoff's 1 st Law	Conservation of charges.		
	$\sum I_{in} = $ Sum of current going into a		
$\sum_{I_{in}} \sum_{I_{in}} \sum_{I_{in}}$	junction		
	$\sum_{i} I_{out} = $ Sum of current going out		
Vinch access and I am	of a junction ΣV from a function V		
KIFCHOIL'S 2 Law	$\sum v = $ Sum of potential difference v		
$\mathbf{\nabla}$	E M F = Voltage supplied by the		
$\sum V = E. M. F$	power supply.		
Resistance in Series	· · · · · · · · · · · · · · · · · · ·		
$R_{total} = R_1 + R_2 + R_3$		MEGA	
.			
Resistance in Parallel			
1 1 1 1			
$\frac{1}{D} = \frac{1}{D} + \frac{1}{D} + \frac{1}{D}$		References	
ι _{total} κ ₁ κ ₂ κ ₃		1. PHYSICS Ordinar	y Le
		2. Education Haven (http:

Practical Electricity				
Electric Power	P = Power			
	V = voltage			
$\mathbf{P} = \mathbf{V}\mathbf{I} = \mathbf{V}^2/\mathbf{R} = \mathbf{I}^2\mathbf{R}$	$\mathbf{R} = \text{resistance}$			
	I = current			
Electrical Energy	E = energy output			
$\mathbf{E} = \mathbf{Pt} = (\mathbf{VI})\mathbf{t}$	P = power			
	t = time			
	V = voltage			
	I = current			
Electromagnetism				
Transformer	V = voltage			
V _p N _p	N = number of coils			
$\frac{1}{V_{-}} = \frac{1}{N_{-}}$	I = current			
(ideal transformer)	Subscript $p = primary$ coil			
$V_{\rm p} J_{\rm p} = V_{\rm s} J_{\rm s}$	Subscript $s =$ secondary coil			
Right hand orin				
	field direction			
Fleming's Right Hand Rule	motion or loce F magnetic field B			
Fleming's Left Hand Rule	Ident hand			

••• MEGA LECTURE

References

1. PHYSICS Ordinary Level (Syllabus 5058)

2. Education Haven (http://megalecture.com

WWW.MEGALECTURE.COM www.youtube.com/megalecture