Q1.

3 (i)	State or imply indefinite integral of e^{2x} is $\frac{1}{2}e^{2x}$, or equivalent Substitute correct limits correctly Obtain answer $R = \frac{1}{2}e^{2p} - \frac{1}{2}$, or equivalent	B1 M1 A1
		[3]
(ii)	Substitute R = 5 and use logarithmic method to obtain an equal in $2p$ Solve for p Obtain answer p = 1.2 (1.1989)	ation M1* M1 (dep*) A1
		[3]

Q2.

7	(i)	Make relevant use of the $cos(A + B)$ formula Make relevant use of $cos2A$ and $sin2A$ formulae Obtain a correct expression in terms of $cosA$ and $sinA$ Use $sin^2A = 1 - cos^2A$ to obtain an expression in terms of $cosA$ Obtain given answer correctly	M1* M1* A1 M1(de	ep*) 5
	(ii)	Replace integrand by $\frac{1}{4}\cos 3x + \frac{3}{4}\cos x$, or equivalent	B1	
		Integrate, obtaining $\frac{1}{12} \sin 3x + \frac{3}{4} \sin x$, or equivalent	B1 + E	31√
		Use limits correctly Obtain given anser	M1 A1	5

Q3.

7	(i)	Make relevant use of the $sin(A + B)$ formula Make relevant use of $sin2A$ and $cos2A$ formulae Obtain a correct expression in terms of $sin x$ and $cos x$ Use $cos^2 x = 1 - sin^2 x$ to obtain an expression in terms of $sin x$		dep*)
	(ii)	Obtain given answer correctly Replace integrand by $\frac{3}{4} \sin x - \frac{1}{4} \sin 3x$, or equivalent	A1 B1	5
		Integrate, obtaining $-\frac{3}{4}\cos x + \frac{1}{12}\cos 3x$, or equivalent	B1√ + B1√	
		Use limits correctly Obtain given answer correctly	M1 A1	5

Q4.

- 6 (i) State correct expression $\frac{1}{2} + \frac{1}{2}\cos 2x$, or equivalent B1 [1] (ii) Integrate an expression of the form $a + b\cos 2x$, where $ab \neq 0$,
 - correctly M1

 State correct integral $\frac{1}{2}x + \frac{1}{4}\sin 2x$, or equivalent A1

 Use correct limits correctly M1
 - Obtain given answer correctly A1 [4]

 (iii) Use identity $\sin^2 x = 1 \cos^2 x$ and attempt indefinite integration M1
 - Obtain integral $x = 1 \cos x$ and attempt indefinite integration M1

 Obtain integral $x \left(\frac{1}{2}x \frac{1}{4}\sin 2x\right)$, or equivalent A1

 Use limits and obtain answer $\frac{1}{6}\pi \frac{\sqrt{3}}{8}$ A1 [3]
 - [Solutions that use the result of part (ii), score M1A1 for integrating 1 and A1 for the final answer.]

Q5.

Obtain integral $\frac{1}{2} \sin 2x - \cos x$ Substitute limits correctly in an integral of the form $a \sin 2x + b \cos x$ Use correct exact values, e.g. of $\cos \left(\frac{1}{6}\pi\right)$ Obtain answer $1 - \frac{1}{4}\sqrt{3}$, or equivalent

A1 [5]

Q6.

- 3 (i) Show or imply correct ordinates 1, 0.5, 0.414213 ... B1
 Use correct formula, or equivalent, with h=1 and three ordinates M1
 Obtain answer 1.21 with no errors seen A1 [3]
 - (ii) Justify the statement that the rule gives an over-estimate B1 [1]

Q7.

Obtain integral ln(x + 2)
 Substitute correct limits correctly
 Use law for the logarithm of a product, a quotient or a power
 Obtain given answer following full and correct working
 A1 [4]

Q8.

- 2 (i) State or imply correct ordinates 0.27067..., 0.20521..., 0.14936... B1

 Use correct formula, or equivalent, correctly with h = 0.5 and three ordinates

 Obtain answer 0.21 with no errors seen A1 [3]
 - (ii) Justify statement that the trapezium rule gives an over-estimate B1 [1]

Q9.

- 4 (a) Obtain integral $a \sin 2x$ with $a = \pm \left(1, 2 \text{ or } \frac{1}{2}\right)$ M1
 - Use limits and obtain $\frac{1}{2}$ (AG) A1 [2]
 - (b) Use $\tan^2 x = \sec^2 x 1$ and attempt to integrate both terms

 Obtain $3\tan x 3x$ Attempt to substitute limits, using exact values

 M1
 - Obtain answer $2\sqrt{3} \frac{\pi}{2}$ A1 [4]

Q10.

- 6 (a) Rewrite integrand as $12e^x + 4e^{3x}$ B1
 Integrate to obtain $12e^x$...
 B1
 Integrate to obtain ... $+\frac{4}{3}e^{3x}$ B1
 - Integrate to obtain ... $+\frac{4}{3}e^{3x}$ B1

 Include ... + c B1 [4]
 - (b) Use identity $\tan^2\theta = \sec^2\theta 1$ B1

 Integrate to obtain $2\tan\theta + \theta$ or equivalent

 Use limits correctly for integral of form $\alpha \tan\theta + b\theta$ M1
 - Confirm given answer $\frac{1}{2}(8+\pi)$ A1 [4]

Q11.

- 2 (i) Show or imply correct ordinates 1, $\sqrt{2}$ or 1.414, 3
 Use correct formula, or equivalent, with h = 1Obtain 3.41

 B1

 M1

 A1 [3]
 - (ii) Obtain 6 − 3.41 and hence 2.59, following their answer to (i) provided less than 6

 Refer, in some form, to two line segments replacing curve and conclude with clear justification of given result that answer is an under-estimate.

 B1 [2]

Q12.

- 4 (a) Obtain integral form of $k \cos \frac{1}{2}x$
 - Obtain correct $-2\cos\frac{1}{2}x$
 - Use limits correctly to obtain 1 A1 [3]
 - (b) Rewrite integrand as $e^{-x} + 1$ B1
 Integrate to obtain $-e^{-x}$...
 Integrate to obtain ... +x + c B1
 [3]

Q13.

7	(i)	Expand to obtain $4 \sin^2 x + 4 \sin x \cos x + \cos^2 x$	B1	
		Use $2 \sin x \cos x = \sin 2x$	B1	
		Attempt to express $\sin^2 x$ or $\cos^2 x$ (or both) in terms of $\cos 2x$	M1	
		Obtain correct $\frac{1}{2}k(1-\cos 2x)$ for their $k \sin^2 x$ or equivalent	A1√	
		Confirm given answer $\frac{5}{2} + 2\sin 2x - \frac{3}{2}\cos 2x$	A1	[5]
	(ii)	Integrate to obtain form $px + q \cos 2x + r \sin 2x$	M1	
		Obtain $\frac{5}{2}x - \cos 2x - \frac{3}{4}\sin 2x$	A1	
		Substitute limits in integral of form $px + q \cos 2x + r \sin 2x$ and attempt simplification	DM1	
		Obtain $\frac{5}{8}\pi + \frac{1}{4}$ or exact equivalent	A1	[4]

Q14.

7	(i)	Replace $\tan^2 x$ by $\sec^2 x - 1$	B1	
		Express $\cos^2 x$ in the form $\pm \frac{1}{2} \pm \frac{1}{2} \cos 2x$	M1	
		Obtain given answer $\sec^2 x + \frac{1}{2}\cos 2x - \frac{1}{2}$ correctly	A1	
		Attempt integration of expression	M1	
		Obtain $\tan x + \frac{1}{4}\sin 2x - \frac{1}{2}x$	A1	
		Use limits correctly for integral involving at least $\tan x$ and $\sin 2x$	M1	
		Obtain $\frac{5}{4} - \frac{1}{8}\pi$ or exact equivalent	A1	[7]
	(ii)	State or imply volume is $\int \pi (\tan x + \cos x)^2 dx$	B1	
		Attempt expansion and simplification	M1	
		Integrate to obtain one term of form $k \cos x$	M1	
		Obtain $\pi(\frac{5}{4} - \frac{1}{6}\pi) + \pi(2 - \sqrt{2})$ or equivalent	A1	[4]

Q15.

3	(i)	<u>Either</u>		
		Use $\sin 2x = 2\sin x \cos x$ to convert integrand to $k \sin^2 2x$	M1	
		Use $\cos 4x = 1 - 2\sin^2 2x$	M1	
		State correct expression $\frac{1}{2} - \frac{1}{2} \cos 4x$ or equivalent	A 1	
		<u>Or</u>		
		Use $\cos^2 x = \frac{1 - \cos 2x}{2}$ and/or $x = \frac{1 - \cos 2x}{2}$ to obtain an equation in $\cos 2x$ only	M1	
		Use $\cos^2 2x = \frac{1 + \cos 4x}{2}$	M1	
		State correct expression $\frac{1}{2} - \frac{1}{2}\cos 4x$ or equivalent	A1	[3]
	(ii)	State correct integral $\frac{3}{2}x - \frac{3}{8}\sin 4x$, or equivalent	B1	
		Attempt to substitute limits, using exact values	M1	
		Obtain given answer correctly	A1	[3]

Q16.

1 Integrate and obtain term of the form
$$k \ln(7-2x)$$
 M1
State $y = -2 \ln(7-2x)(+c)$ A1
Evaluate c DM1
Obtain answer $y = -2 \ln(7-2x) + 2$ A1 k [4]

Q17.

6	(a)	Obtain indefinite integral $-\frac{1}{2}\cos 2x + \sin x$	 4.0	B1 + B1		
	150	Use limits with attempted integral		Ml	9	
		Obtain answer 2 correctly with no errors		Al	4	
	(b)	(i) Identify R with correct definite integral and attempt to integrate		MI		
		Obtain indefinite integral $\ln (x+1)$		B1		
		Obtain answer $R = \ln(p+1) - \ln 2$		A1	3	
		(ii) Use exponential method to solve an equation of the form $\ln x = k$		MI	53	
		Obtain answer $p = 13.8$		Al	2	
				0.00		

Q18.

7	(5)	Obtain derivative of the form $k \sec^2 2x$, where $k = 2$ or $k = 1$	MI	
		Obtain correct derivative 2 sec ² 2x	Al	2
	(ii)	State or imply the indefinite integral is $\frac{1}{k} \tan 2x$, where $k = 2$ or $k = 1$	MI+	
		Substitute limits correctly	M1(de	(p*)
		Obtain given answer $\frac{1}{2}\sqrt{3}$	AI	
		Use $\tan^2 2x = \sec^2 2x - 1$ and attempt to integrate both terms, or equivalent	MI	
		Substitute limits in indefinite integral of the form $\frac{1}{k} \tan 2x - x$, where $k = 2$ or $k = 1$	Mì	
		Obtain answer $\frac{1}{2}\sqrt{3} - \frac{1}{6}\pi$, or equivalent	Al	6
	(iii)	State that the integrand is equivalent to $\frac{1}{2} \sec^2 2x$	BL	
		Obtain answer $\frac{1}{4}\sqrt{3}$	Bi	2

Q19.

1	State indefinite integral of the form $k \ln(2x + 1)$, where $k = \frac{1}{2}$, 1 or 2	M1	
	State correct integral $\frac{1}{2}$ In(2x + 1)	A1	
	Use limits correctly, allow use of limits $x = 4$ and $x = 1$ in an incorrect form Obtain given answer	M1 A1	[4]

Q20.

7	(i)	Expand and use sin 2A formula	M1	
		Use cos 2A formula at least once	M1	
		Obtain any correct expression in terms of $\cos 2x$ and $\sin 2x$ only – can be implied	A1	
		Obtain given answer correctly	A1	[4]
	(ii)	State indefinite integral $5x - 2\sin 2x - \frac{3}{2}\cos 2x$	B2	
		[Award B1 if one error in one term]		
		Substitute limits correctly – must be correct limits	M1	
		Obtain answer $\frac{1}{4}(5\pi - 2)$, or exact simplified equivalent	A1	[4]

Q21.

5	Integrate and state term ln x	B1	
	Obtain term of the form $k \ln (2x + 1)$	M1	
	State correct term $-2\ln(2x+1)$	A1	
	Substitute limits correctly	M1	
	Use law for the logarithm of a product, quotient or power	M1	
	Obtain given answer correctly	A1	[6]

Q22.

5	(i)	Use double angle formulae and obtain $a + b\cos 4x$	M1
		Obtain answer $\frac{1}{2} + \frac{1}{2}\cos 4x$, or equivalent	A1 [2]

(ii) Integrate and obtain
$$\frac{1}{2}x + \frac{1}{8}\sin 4x$$
 A1 $\sqrt{ + A1}\sqrt{ }$ Substitute limits correctly M1

Obtain answer $\frac{1}{16}\pi + \frac{1}{8}$, or exact equivalent A1 [4]

Q23.

3	(i)	Show or imply correct ordinates 1, 1.15470, 2	B1	
		Use correct formula, or equivalent, with $h = \frac{1}{6}\pi$ and three ordinates	M1	
		Obtain answer 1.39 with no errors seen	A1	[3]
	(ii)	Make recognisable sketch of $y = \sec x$ for $0 \le x \le \frac{1}{3}\pi$	B1	
		Using a correct graph, explain that the rule gives an over-estimate	B1	[2]

Q24.

8 (a) Integrate and obtain term
$$k \cos 2x$$
, where $k = \pm \frac{1}{2}$ or ± 1

Obtain term $-\frac{1}{2}\cos 2x$

A1

Obtain term $\tan x$

Substitute correct limits correctly

Obtain exact answer $\frac{3}{4} + \sqrt{3}$

A1 [5]

(b)	Integrate and obtain $\frac{1}{2} \ln x + \ln(x+1)$ or $\frac{1}{2} \ln 2x + \ln(x+1)$	B1 + B1	
	Substitute correct limits correctly	M1	
	Obtain given answer following full and correct working	A1	[4]

Q25.

3	Integrate and obtain $\frac{1}{2}e^{2x}$ term	B 1	
	Obtain 2e ^x term	B1	
	Obtain x	B1	
	Use limits correctly, allow use of limits $x = 1$ and $x = 0$ into an incorrect form	M1	
	Obtain given answer	A1	[5]
	S. R. Feeding limits into original integrand, 0/5		

Q26.

4	(a)	Obtain integral of the form ke^{1-2x} with any non-zero k	M1	
		Correct integral	A1	[2]

(b) Attempt to use double angle formula to expand
$$\cos(3x + 3x)$$
 M1

State correct expression $\frac{1}{2} - \frac{1}{2} \cos 6x$ or equivalent

A1

Integrate an expression of the form $a + b \cos 6x$, where $ab \neq 0$, correctly

M1

State correct integral $\frac{1}{2}x - \frac{1}{12} \sin 6x$, or equivalent

A1 [4]

Q27.

2	Integrate and obtain term of the form $k\ln(4x+1)$	M1	
	State correct term $\frac{1}{2}\ln(4x+1)$	A1	
	Substitute limits correctly	M1	
	Use law for the logarithm of a quotient or a power	M1	
	Obtain given answer correctly	A1	[5]

Q28.

8	(i)	Make relevant use of the $cos(A + B)$ formula	M1*	
		Make relevant use of the $\cos 2A$ and $\sin 2A$ formulae	M1*	
		Obtain a correct expression in terms of $\cos x$ and $\sin x$	A1	
		Use $\sin^2 x = 1 - \cos^2 x$ to obtain an expression in terms of $\cos x$	M1(dep*)	
		Obtain given answer correctly	A1	[5]
	(ii)	Replace integrand by $\frac{1}{2}\cos 3x + \frac{1}{2}\cos x$, or equivalent	B1	
		Integrate, obtaining $\frac{1}{6}\sin 3x + \frac{1}{2}\sin x$, or equivalent	$\mathbf{B1} + \mathbf{B1} \sqrt{}$	
		Use limits correctly	M1	

A1 [5]

Q29.

Obtain given answer

4	State at least one correct integral	B1	
	Use limits correctly to obtain an equation in e^{2k} , e^{4k}	M1	
	Carry out recognizable solution method for quadratic in e^{2k}	M1	
	Obtain $e^{2k} = 1$ and $e^{2k} = 3$	A1	
	Use logarithmic method to solve an equation of the form $e^{\lambda a} = b$, where $b > 0$	M1	
	Obtain answer $k = \frac{1}{2} \ln 3$	A1	[6]

Q30.

- 4 (i) State correct expression $\frac{1}{2} + \frac{1}{2}\cos 2x$, or equivalent B1 [1]
 - (ii) Integrate an expression of the form $a + b \cos 2x$, where $ab \neq 0$, correctly

 M1

 State correct integral $\frac{1}{2}x + \frac{1}{4}\sin 2x$, or equivalent

 A1
 - Obtain correct integral (for sin 2x term) of $-\frac{1}{2}\cos 2x$
 - Attempt to substitute limits, using exact values

 Obtain given answer correctly

 M1

 A1 [5]

Q31.

- 6 (a) State or imply correct ordinates 0.125, 0.08743..., 0.21511... B1

 Use correct formula, or equivalent, correctly with h = 0.5 and three ordinates

 Obtain answer 0.11 with no errors seen

 A1 [3]
 - (b) Attempt to expand brackets and divide by e^{2x} M1
 Integrate a term of form ke^{-x} or ke^{-2x} correctly
 Obtain 2 correct terms
 Fully correct integral $x + 4e^{-x} 2e^{-2x} + c$ A1
 [4]

Q32.

- 6 (a) Obtain integral $ke^{-\frac{1}{2}x}$ with any non-zero k M1

 Correct integral A1 [2]
 - (b) State indefinite integral of the form $k \ln (3x-1)$, where k=2, 6 or 3

 State correct integral $2 \ln (3x-1)$ Substitute limits correctly (must be a function involving a logarithm)

 Use law for the logarithm of a power or a quotient

 Obtain given answer correctly

 A1

 [5]

Q33.

- 6 (a) (i) Attempt to divide by e^{2x} and attempt to integrate 2 terms

 Integrate a term of form ke^{-2x} correctly

 Fully correct integral $x 3e^{-2x} (+c)$ A1 [3]
 - (ii) State correct expression $\frac{1}{2}\cos 2x + \frac{1}{2}$ or equivalent B1

 Integrate an expression of the form $a + b\cos 2x$, where $ab \neq 0$, correctly M1

 State correct integral $\frac{3\sin 2x}{4} + \frac{3x}{2}(+c)$ A1 [3]
 - (b) State or imply correct ordinates 5.46143..., 4.78941..., 4.32808... B1

 Use correct formula, or equivalent, correctly with h = 0.5 and three ordinates

 Obtain answer 4.84 with no errors seen

 A1 [3]

Q34.

1	(i)	State indefinite integral of the form $k \ln (4x - 1)$, where $k = 2, 4$, or $\frac{1}{2}$	M1	
		State correct integral $\frac{1}{2} \ln (4x - 1)$	Al	[2]
	(ii)	Substitute limits correctly	M1	
		Use law for the logarithm of a power or a quotient	M1	
		Obtain ln 3 correctly	A1	[3]

Q35.

6 (a) Expand brackets and use
$$\sin^2 x + \cos^2 x = 1$$
 M1
Obtain $1 - \sin 2x$ A1
Integrate and obtain term of form $\pm k \cos 2x$, where $k = \frac{1}{2}$, 1 or 2

State correct integral $x + \frac{\cos 2x}{2}(+c)$ A1 [4]

(b) (i) State or imply correct ordinates 1.4142..., 1.0823..., 1 B1

Use correct formula, or equivalent, correctly with
$$h = \frac{\pi}{8}$$
 and three ordinates M1

Obtain answer 0.899 with no errors seen A1 [3]

(ii) Make a recognisable sketch of
$$y = \csc x$$
 for $0 < x \le \frac{1}{2}\pi$

B1

Justify statement that the trapezium rule gives an over-estimate

B1 [2]

Q36.

5	(i)	Express left-hand side as a single fraction	M1	
		Use $\sin 2\theta = 2\sin \theta \cos \theta$ at some point	B1	
		Complete proof with no errors seen (AG)	A1	[3]

© Cambridge International Examinations 2014

Page 5	Mark Scheme	Syllabus	Pape	r
57.4	GCE AS LEVEL – May/June 2014	9709	21	
(ii) (a) Sta	te $\frac{2}{\sin\frac{1}{4}\pi}$ or equivalent		B 1	
Ob	tain $2\sqrt{2}$ or exact equivalent (dependent on first B1)		B1	[2]
(b) Sta	te or imply $k \sin 2\theta$ for any k		B1	
Int	egrate to obtain $-\frac{3}{2}\cos 2\theta$		B1	
Su	ostitute both limits correctly to obtain 3		B1	[3]
37.				
6 (a) Integr	ate to obtain form $k \ln(2x-7)$		M1	
Obtain	a correct $3\ln(2x-7)$		A1	
	tute limits correctly (dependent on first M1)		DM1	
	w for logarithm of a quotient or power (dependent on first M1) m ln125 following correct work and sufficient detail (AG)		DM1 A1	[5]
(b) Family	ota mat (1) 5 0 12 17		M1	
	ate y at (1) , 5, 9, 13, 17 precedef formula, or equivalent, with $h = 4$ and five y-values		M1	
Obtain			A 1	[3]
38.				
3 (a) Inte	grate to obtain form $k\sin(\frac{1}{3}x+2)$ where $k \neq 4$		M1	
	ain $12\sin(\frac{1}{3}x+2)$ (+c)		A1	[2]
(b) Stat	e or imply correct y-values 2, $\sqrt{20}$, $\sqrt{68}$, $\sqrt{148}$		B1	
	correct formula, or equivalent, with $h = 4$ and four y-values		M1	
Obt	ain 79.2		A1	[3]

Q39.

1	State or imply correct y-values 6, 4, 0, 8, 24	B1	
	Use correct formula, or equivalent, with $h = 1$ and five y-values	M1	
	Obtain 27	A1 [3	31

Q40.

- 3 (a) Express integrand in the form $p\cos\theta + 2$ M1

 State correct $2\cos\theta + 2$ A1

 Integrate to obtain $2\sin\theta + 2\theta$ (+ c) A1 [3]
 - (b) Integrate to obtain form $k \ln(2x+3)$ M1

 Obtain correct $\frac{1}{2} \ln(2x+3)$ A1

 Apply limits correctly DM1

 Obtain $\frac{1}{2} \ln 15$ A1 [4]

Q41.

2 (i) Integrate to obtain form $pe^{-x} + qe^{-3x}$ where $p \neq 1, q \neq 6$ M1

Obtain $-e^{-x} - 2e^{-3x}$ (allow unsimplified)

Apply both limits to $pe^{-x} + qe^{-3x}$ (allow p = 1, q = 6)

Obtain $3 - e^{-a} - 2e^{-3a}$ A1 [4]

(ii) State 3 following a result of the form $k + pe^{-x} + qe^{-3x}$ B1 $^{\cite{h}}$ [1]

P3 (variant1 and 3)

Q1.

Q2.

(i) State or imply the form $\frac{A}{x+1} + \frac{B}{x+3}$ and use a relevant method to find A or B 8 M1A1 [2] (ii) Square the result of part (i) and substitute the fractions of part (i) M1Obtain the given answer correctly A1 [2] (iii) Integrate and obtain $-\frac{1}{x+1} - \ln(x+1) + \ln(x+3) - \frac{1}{x+3}$ **B3** Substitute limits correctly in an integral containing at least two terms of the correct M1Obtain given answer following full and exact working A1 [5]

Q3.

- (i) Use correct $\cos(A+B)$ formula to express $\cos 3\theta$ in terms of trig functions of 2θ and θ M1

 Use correct trig formulae and Pythagoras to express $\cos 3\theta$ in terms of $\cos \theta$ M1

 Obtain a correct expression in terms of $\cos \theta$ in any form

 Obtain the given identity correctly

 [SR: Give M1 for using correct formulae to express RHS in terms of $\cos \theta$ and $\cos 2\theta$, then M1A1 for expressing in terms of either only $\cos 3\theta$ and $\cos \theta$, or only $\cos 2\theta$, $\sin 2\theta$, $\cos \theta$, and $\sin \theta$, and A1 for obtaining the given identity correctly.]
 - (ii) Use identity and integrate, obtaining terms $\frac{1}{4}(\frac{1}{3}\sin 3\theta)$ and $\frac{1}{4}(3\sin\theta)$, or equivalent B1 + B1

 Use limits correctly in an integral of the form $k\sin 3\theta + l\sin\theta$ M1

 Obtain answer $\frac{2}{3} \frac{3}{8}\sqrt{3}$, or any exact equivalent A1 [4]

Q4.

- 7 (i) State or imply dx = 2t dt or equivalent B1 Express the integral in terms of x and dx M1 Obtain given answer $\int_{1}^{5} (2x-2) \ln x dx$, including change of limits AG A1 [3]
 - (ii) Attempt integration by parts obtaining $(ax^2 + bx) \ln x \pm \int (ax^2 + bx) \frac{1}{x} dx$ or equivalent M1

 Obtain $(x^2 2x) \ln x \int (x^2 2x) \frac{1}{x} dx$ or equivalent A1

 Obtain $(x^2 2x) \ln x \frac{1}{2}x^2 + 2x$ A1

 Use limits correctly having integrated twice M1

 Obtain 15 ln 5 4 or exact equivalent A1 [5]

 [Equivalent for M1 is $(2x 2)(ax \ln x + bx) \int (ax \ln x + bx) 2 dx$]

Q5.

10 (i) Separate variables correctly and integrate of at least one side Carry out an attempt to find A and B such that $\frac{1}{N(1800-N)} \equiv \frac{A}{N} + \frac{B}{1800-N}$, or equivalent Obtain $\frac{2}{N} + \frac{2}{1800-N}$ or equivalent Integrates to produce two terms involving natural logarithms Obtain $2 \ln N - 2 \ln (1800 - N) = t$ or equivalent Evaluate a constant, or use N = 300 and t = 0 in a solution involving $a \ln N$, $b \ln(1800)$ and ctM1

Obtain
$$2 \ln N - 2 \ln (1800 - N) = t - 2 \ln 5$$
 or equivalent

Use laws of logarithms to remove logarithms

M1

Obtain
$$N = \frac{1800e^{\frac{1}{2}t}}{5 + e^{\frac{1}{2}t}}$$
 or equivalent A1 [9]

Q6.

3 Attempt integration by parts and reach
$$k(1-x)e^{-\frac{1}{2}x} \pm k \int e^{-\frac{1}{2}x} dx$$
, or equivalent M1

Obtain $-2(1-x)e^{-\frac{1}{2}x} - 2\int e^{-\frac{1}{2}x} dx$, or equivalent A1

Integrate and obtain $-2(1-x)e^{-\frac{1}{2}x} + 4e^{-\frac{1}{2}x}$, or equivalent A1

Use limits $x = 0$ and $x = 1$, having integrated twice M1

Obtain the given answer correctly A1 [5]

Q7.

9 (i) State or imply
$$\frac{dx}{dt} = k(10 - x)(20 - x)$$
 and show $k = 0.01$ B1 [1]

(ii) Separate variables correctly and attempt integration of at least one side M1 Carry out an attempt to find A and B such that
$$\frac{1}{(10-x)(20-x)} = \frac{A}{10-x} + \frac{B}{20-x}, \text{ or equivalent}$$
 M1

Obtain
$$A = \frac{1}{10}$$
 and $B = -\frac{1}{10}$, or equivalent A1

Integrate and obtain
$$-\frac{1}{10}\ln(10-x) + \frac{1}{10}\ln(20-x)$$
, or equivalent A1
Integrate and obtain term 0.01t, or equivalent A1

Integrate and obtain term 0.01
$$t$$
, or equivalent
Evaluate a constant, or use limits $t = 0$, $x = 0$, in a solution containing terms of the form

$$a \ln(10-x)$$
, $b \ln(20-x)$ and ct M1

Obtain answer in any form, $e = \frac{1}{2} \ln(10-x) + \frac{1}{2} \ln(20-x) = 0.01t + \frac{1}{2} \ln 2$

Obtain answer in any form, e.g.
$$-\frac{1}{10}\ln(10-x) + \frac{1}{10}\ln(20-x) = 0.01t + \frac{1}{10}\ln 2$$
 A1 $\sqrt{10}$ Use laws of logarithms to correctly remove logarithms

Rearrange and obtain
$$x = 20(\exp(0.1t) - 1)/(2\exp(0.1t) - 1)$$
, or equivalent A1 [9]

Q8.

7	Separate variables correctly and attempt integration on at least one side	M1	
	Obtain $\frac{1}{3}y^3$ or equivalent on left-hand side	A1	
	Use integration by parts on right-hand side (as far as $axe^{3x} + \int be^{3x} dx$)	M1	
	Obtain or imply $2xe^{3x} + \int 2e^{3x} dx$ or equivalent	A1	
	Obtain $2xe^{3x} - \frac{2}{3}e^{3x}$	A1	
	Substitute $x = 0$, $y = 2$ in an expression containing terms Ay^3 , Bxe^{3x} , Ce^{3x} , where $ABC \neq 0$, and		
	find the value of c	M1	
	Obtain $\frac{1}{3}y^3 = 2xe^{3x} - \frac{2}{3}e^{3x} + \frac{10}{3}$ or equivalent	A1	
	Substitute $x = 0.5$ to obtain $y = 2.44$	A1	[8]

Q9.

5	Separate variables correctly	B1	
	Integrate and obtain term ln x	B1	
	Integrate and obtain term $\frac{1}{2}\ln(y^2+4)$	B1	
	Evaluate a constant or use limits $y = 0$, $x = 1$ in a solution containing $a \ln x$ and $b \ln(y^2 + 4)$	M1	
	Obtain correct solution in any form, e.g. $\frac{1}{2}\ln(y^2+4) = \ln x + \frac{1}{2}\ln 4$	A1	
	Rearrange as $y^2 = 4(x^2 - 1)$, or equivalent	A1	[6]

Q10.

4	Separate variables correctly	B1	
	Obtain term $k \ln(4-x^2)$, or terms $k_1 \ln(2-x) + k_2 \ln(2+x)$	B1	
	Obtain term $-2 \ln(4-x^2)$, or $-2 \ln(2-x) -2 \ln(2+x)$, or equivalent	B1	
	Obtain term t, or equivalent	B1	
	Evaluate a constant or use limits $x = 1$, $t = 0$ in a solution containing terms $a \ln(4 - x^2)$ and bt		
	or terms $c \ln(2-x)$, $d \ln(2+x)$ and bt	M ₁	
	Obtain correct solution in any form, e.g. $-2 \ln(4 - x^2) = t - 2 \ln 3$	A1	
	Rearrange and obtain $x^2 = 4 - 3\exp(-\frac{1}{2}t)$, or equivalent (allow use of 2 ln 3 = 2.20)	A1	[7]

Q11.

9	State or imply form $A + \frac{B}{2x+1} + \frac{C}{x+2}$	B1	
	State or obtain $A = 2$	Bl	
	Use correct method for finding B or C	M1	
	Obtain $B = 1$	A1	
	Obtain $C = -3$	A1	
	Obtain $2x + \frac{1}{2}\ln(2x+1) - 3\ln(x+2)$ [Deduct B1\(\frac{1}{2}\) for each error or omission]	Вз√	
	Substitute limits in expression containing $a\ln(2x+1) + b\ln(x+2)$	Ml	
	Show full and exact working to confirm that $8 + \frac{1}{2} \ln 9 - 3 \ln 6 + 3 \ln 2$, or an equivalent		
	expression, simplifies to given result 8 - ln 9	Al	[10]
	[SR: If A omitted from the form of fractions, give B0B0M1A0A0 in (i); B0 $\sqrt{B1}\sqrt{B1}\sqrt{M1A0}$ in (ii).]		
	[SR: For a solution starting with $\frac{M}{2x+1} + \frac{Nx}{x+2}$ or $\frac{Px}{2x+1} + \frac{Q}{x+2}$, give B0B0M1A0A0 in (i);		
	B1√B1√B1√, if recover correct form, M1A0 in (ii).]		
	[SR: For a solution starting with $\frac{B}{2x+1} + \frac{Dx+E}{x+2}$, give M1A1 for one of $B=1$, $D=2$, $E=1$		
	and A1 for the other two constants; then give B1B1 for $A = 2$, $C = -3$.]		
	[SR: For a solution starting with $\frac{Fx+G}{2x+1} + \frac{C}{x+2}$, give M1A1 for one of $C = -3$, $F = 4$, $G = 3$		
	and A1 for the other constants or constant; then give B1B1 for $A = 2$, $B = 1$.		

Q12.

5	(i)	Substitute for x, separate variables correctly and attempt integration of both sides	M1	
		Obtain term ln y, or equivalent	A1	
		Obtain term e^{-3t} , or equivalent	A1	
		Evaluate a constant, or use $t = 0$, $y = 70$ as limits in a solution containing terms		
		aln y and be^{-3t}	M1	
		Obtain correct solution in any form, e.g. $\ln y - \ln 70 = e^{-3t} - 1$	A1	
		Rearrange and obtain $y = 70\exp(e^{-3t} - 1)$, or equivalent	A1	[6]
	(ii)	Using answer to part (i), either express p in terms of t or use $e^{-3t} \rightarrow 0$ to find the limiting	200	
		value of y	M1	
		Obtain answer $\frac{100}{100}$ from correct exact work	A1	[2]

Q13.

8 (i) State or imply the form
$$A + \frac{B}{x+1} + \frac{C}{2x-3}$$

State or obtain $A = 2$

Use a correct method for finding a constant

Obtain $B = -2$

Obtain $C = -1$

B1

B1

A1

A1

[5]

(ii) Obtain integral
$$2x - 2\ln(x+1) - \frac{1}{2}\ln(2x-3)$$
 B3 $\sqrt[h]$ (Deduct B1 $\sqrt[h]$ for each error or omission. The f.t. is on A , B , C .) Substitute limits correctly in an expression containing terms $a\ln(x+1)$ and $b\ln(2x-3)$ M1 Obtain the given answer following full and exact working [SR:If A omitted from the form of fractions, give B0B0M1A0A0 in (i); B1 $\sqrt[h]$ B1 $\sqrt[h]$ M1A0 in (ii).]

[SR:For a solution starting with
$$\frac{B}{x+1} + \frac{Dx+E}{2x-3}$$
, give M1A1 for one of $B=-2$, $D=4$, $E=-7$ and A1 for the other two constants; then give B1B1 for $A=2$, $C=-1$.] [SR:For a solution starting with $\frac{Fx+G}{x+1} + \frac{C}{2x-3}$ or with $\frac{Fx}{x+1} + \frac{C}{2x-3}$, give M1A1 for one of $C=-1$, $F=2$, $G=0$ and A1 for the other constants or constant; then give B1B1 for $A=2$, $B=-2$.]

Q14.

8 (a) Carry out integration by parts and reach
$$ax^2 \ln x + b \int \frac{1}{2}x^2 dx$$
 M1*

Obtain $2x^2 \ln x - \int \frac{1}{x} \cdot 2x^2 dx$ A1

Obtain $2x^2 \ln x - x^2$ A1

Use limits, having integrated twice M1 (dep*)

Confirm given result $56 \ln 2 - 12$ A1 [5]

© Cambridge International Examinations 2013

Page 6	Mark Scheme	Syllabus	Paper	111
1000	GCE AS/A LEVEL – May/June 2013	9709	31	
(b) State or	imply $\frac{du}{dx} = 4\cos 4x$		B 1	to.
Carry or	at complete substitution except limits		M1	
Obtain	$\int (\frac{1}{4} - \frac{1}{4}u^2) du$ or equivalent		A1	
Integrat	e to obtain form $k_1u + k_2u^3$ with non-zero constants k_1, k_2		M1	
Use app	ropriate limits to obtain 11/96		A1	[5]

Q15.

10	(i)	State $\frac{dV}{dt} = 80 - kV$	B1	
		Correctly separate variables and attempt integration of one side	M1	
		Obtain $a \ln(80 - kV) = t$ or equivalent	M1*	
		Obtain $-\frac{1}{k}\ln(80-kV) = t$ or equivalent	A1	
		Use $t = 0$ and $V = 0$ to find constant of integration or as limits	M1 (dep*)	
		Obtain $-\frac{1}{k}\ln(80 - kV) = t - \frac{1}{k}\ln 80$ or equivalent	A1	
		Obtain given answer $V = \frac{1}{k} (80 - 80e^{-kt})$ correctly	A1	[7]
	(ii)	Use iterative formula correctly at least once	M1	
		Obtain final answer 0.14	A1	
		Show sufficient iterations to 4 s.f. to justify answer to 2 s.f. or show a sign		
		change in the interval (0.135, 0.145)	A1	[3]
	(iii)	State a value between 530 and 540 cm ³ inclusive	B1	
		State or imply that volume approaches 569 cm ³ (allowing any value between 567 and 571 inclusive)	В1	[2]

Q16.

4	(i)	State $R = 2$ Use trig formula to find α	B1 M1	
		Obtain $\alpha = \frac{1}{6}\pi$ with no errors seen	A1	[3]
	(ii)	Substitute denominator of integrand and state integral $k \tan (x - \alpha)$ State correct indefinite integral $\frac{1}{4} \tan \left(x - \frac{1}{6} \pi \right)$	M1*	
		Substitute limits Obtain the given answer correctly	M1 (dep*)	[4]

Q17.

8	(i)	Separate	variables correctly and integrate at least one side	M1	
		Obtain to	erm ln t, or equivalent	B1	
			erm of the form $a \ln(k-x^3)$	M1	
		Obtain to	erm $-\frac{2}{3}\ln(k-x^3)$, or equivalent	A1	
		EITHER	Evaluate a constant or use limits $t = 1, x = 1$ in a solution containing $a \ln t$ at $b \ln(k - x^3)$	nd M1*	
			Obtain correct answer in any form e.g. $\ln t = -\frac{2}{3}\ln(k-x^3) + \frac{2}{3}\ln(k-1)$	A1	
			Use limits $t = 4$, $x = 2$, and solve for k Obtain $k = 9$	M1(dep*)	
		OR:	Using limits $t = 1$, $x = 1$ and $t = 4$, $x = 2$ in a solution containing $a \ln t$ and $b \ln (k - x^3)$ obtain an equation in k	M1*	
			Obtain a correct equation in any form, e.g. $\ln 4 = -\frac{2}{3}\ln(k-8) + \frac{2}{3}\ln(k-1)$	A1	
			Solve for k Obtain $k = 9$	M1(dep*) A1	
		Substitu	te $k = 9$ and obtain $x = (9 - 8t^{-\frac{3}{2}})^{\frac{1}{3}}$	A1	[9]
	(ii)	State tha	t x approaches $9^{\frac{1}{3}}$, or equivalent	в₁∿	[1]

Q18.

5	(i)	EITHER:	Use double angle formulae correctly to express LHS in terms of trig functions		
			of 2θ	M1	
			Use trig formulae correctly to express LHS in terms of sin θ , converting at least	st	
			two terms	M1	
			Obtain expression in any correct form in terms of $\sin \theta$	A1	
			Obtain given answer correctly	A1	
		OR:	Use double angle formulae correctly to express RHS in terms of trig functions		
			of 2θ	M1	
			Use trig formulae correctly to express RHS in terms of $\cos 4\theta$ and $\cos 2\theta$	M1	
			Obtain expression in any correct form in terms of $\cos 4\theta$ and $\cos 2\theta$	A1	
			Obtain given answer correctly	A1	[4]
	(ii)	State inde	finite integral $\frac{1}{4}\sin 4\theta - \frac{4}{2}\sin 2\theta + 3\theta$, or equivalent	B2	
		(award B1	if there is just one incorrect term)		
		Use limits	correctly, having attempted to use the identity	M1	
		Obtain an	swer $\frac{1}{22}(2\pi - \sqrt{3})$, or any simplified exact equivalent	A1	[4]

Q19.

10 (i) State or imply
$$\frac{dA}{dt} = kV$$

Obtain equation in r and
$$\frac{dr}{dt}$$
, e.g. $8\pi r \frac{dr}{dt} = k \frac{4}{3} \pi r^3$

Use
$$\frac{dr}{dt} = 2$$
, $r = 5$ to evaluate k

[4]

Obtain given answer

(ii) Separate variables correctly and integrate both sides

Obtain terms
$$-\frac{1}{r}$$
 and 0.08t, or equivalent

Evaluate a constant or use limits t = 0, r = 5 with a solution containing terms of the form

$$\frac{a}{r}$$
 and bt

Obtain solution
$$r = \frac{5}{(1 - 0.4t)}$$
, or equivalent

(iii) State the set of values $0 \le t < 2.5$, or equivalent [Allow t < 2.5 and 0 < t < 2.5 to earn B1.]

B1 [1]

Q20.

5 (i) State or imply $dx = 2 \cos \theta d\theta$, or $\frac{dx}{d\theta} = 2 \cos \theta$, or equivalent

B1

Substitute for x and dx throughout the integral

- M1
- Obtain the given answer correctly, having changed limits and shown sufficient working
- A1 [3]

(ii) Replace integrand by $2-2\cos 2\theta$, or equivalent

B1

Obtain integral $2\theta - \sin 2\theta$, or equivalent

- B1√ M1
- Substitute limits correctly in an integral of the form $a\theta \pm b \sin 2\theta$, where $ab \triangleright 0$ Obtain answer $\frac{1}{3}\pi - \frac{\sqrt{3}}{2}$ or exact equivalent
- A1 [4]

[The f.t. is on integrands of the form $a + c \cos 2\theta$, where $ac \triangleright 0$.]

Q21.

10	(i)	State or imply $\frac{dx}{dt} = k(20 - x)$	B1	
		Show that $k = 0.05$	B1	[2]
	(ii)	Separate variables correctly and integrate both sides	B1	
	(11)	Obtain term $-\ln(20-x)$, or equivalent	Bi	
		Obtain term $\frac{1}{20}t$, or equivalent	B1	
		Evaluate a constant or use limits $t = 0$, $x = 0$ in a solution containing terms $a \ln(20 - x)$ and bt) M1*	
		Obtain correct answer in any form, e.g. $\ln 20 - \ln(20 - x) = \frac{1}{20}t$	A1	[5]
	(iii)	Substitute $t = 10$ and calculate x	M1(dep*)	
		Obtain answer $x = 7.9$	A1	[2]
	(iv)	State that x approaches 20	B1	[1]

Q22.

5	State or imply form $\frac{A}{2x+1} + \frac{B}{x+2}$	B1	
	Use relevant method to find A or B	M1	
	Obtain $\frac{4}{2x+1} - \frac{1}{x+2}$	A1	
	Integrate and obtain $2\ln(2x+1) - \ln(x+2)$ (ft on their A, B)	B1√B1√	
	Apply limits to integral containing terms $a \ln(2x+1)$ and $b \ln(x+2)$ and apply a law	v of	
	logarithms correctly.	M1	
	Obtain given answer ln 50 correctly	A1	[7]

Q23.

(i)	State $\frac{\mathrm{d}A}{\mathrm{d}t} = k\sqrt{2A-5}$		B1	[1]
(ii)	Separate variables correctly and attempt integration of each side		M1	
	Obtain $(2A-5)^{\frac{1}{2}} = \dots$ or equivalent		A1	
	Obtain = kt or equivalent		A1	
	Use $t = 0$ and $A = 7$ to find value of arbitrary constant		M1	
	Obtain $C = 3$ or equivalent		A1	
	Use $t = 10$ and $A = 27$ to find k		M1	
	Obtain $k = 0.4$ or equivalent		A1	
	Substitute $t = 20$ and values for C and k to find value of A		M1	
	Obtain 63	cwo	A1	[9]
•		Obtain $(2A-5)^{\frac{1}{2}} = \dots$ or equivalent Obtain = kt or equivalent Use $t = 0$ and $A = 7$ to find value of arbitrary constant Obtain $C = 3$ or equivalent Use $t = 10$ and $A = 27$ to find k Obtain $k = 0.4$ or equivalent Substitute $t = 20$ and values for C and k to find value of A	(ii) Separate variables correctly and attempt integration of each side Obtain $(2A-5)^{\frac{1}{2}} = \dots$ or equivalent Obtain = kt or equivalent Use $t=0$ and $A=7$ to find value of arbitrary constant Obtain $C=3$ or equivalent Use $t=10$ and $A=27$ to find k Obtain $k=0.4$ or equivalent Substitute Substitute Substitute Substitute Substitute Substitute Substitute Substitute Substitute Substit	(ii) Separate variables correctly and attempt integration of each side $ M1 $ Obtain $(2A-5)^{\frac{1}{2}} = \dots$ or equivalent Obtain = kt or equivalent Use $t = 0$ and $A = 7$ to find value of arbitrary constant Obtain $C = 3$ or equivalent Use $t = 10$ and $A = 27$ to find k Obtain $k = 0.4$ or equivalent Substitute $k = 20$ and values for $k = 0.4$ to find value of $k = 0.4$ or M1

Q24.

4	Separate variables and attempt integration of at least one side	M1	
	Obtain term $ln(x+1)$	A1	
	Obtain term k ln sin 2θ , where $k = \pm 1, \pm 2$, or $\pm \frac{1}{2}$	M1	
	Obtain correct term $\frac{1}{2} \ln \sin 2\theta$	A1	
	Evaluate a constant, or use limits $\theta = \frac{1}{12}\pi$, $x = 0$ in a solution containing terms $a \ln(x + 1)$ and		
	$b \ln \sin 2\theta$	M1	
	Obtain solution in any form, e.g. $\ln(x+1) = \frac{1}{2} \ln \sin 2\theta - \frac{1}{2} \ln \frac{1}{2}$ (f.t. on $k = \pm 1, \pm 2$, or $\pm \frac{1}{2}$)	A1√	
	Rearrange and obtain $x = \sqrt{(2\sin 2\theta)} - 1$, or simple equivalent	A1	[7]

Q25.

8	(i)	Use any relevant method to determine a constant Obtain one of the values $A = 3$, $B = 4$, $C = 0$ Obtain a second value Obtain the third value	M1 A1 A1 A1	[4]
	(ii)	Integrate and obtain term $-3 \ln(2-x)$ Integrate and obtain term $k \ln(4+x^2)$ Obtain term $2 \ln(4+x^2)$	B1√ M1 A1√	
		Substitute correct limits correctly in a complete integral of the form $a \ln(2-x) + b \ln(4+x^2)$, $ab \neq 0$ Obtain given answer following full and correct working	M1 A1	[5]

Q26.

4	(i)	Separate variables and attempt integration on both sides	M1*		
		Obtain $2N^{0.5}$ on left-hand side or equivalent	A1		
		Obtain $-60e^{-0.02t}$ on right-hand side or equivalent	A1		
		Use 0 and 100 to evaluate a constant or as limits in a solution containing terms $aN^{0.5}$ and $be^{-0.02t}$	DM1*		
		Obtain $2N^{0.5} = -60e^{-0.02t} + 80$ or equivalent	A1		
		Conclude with $N = (40 - 30e^{-0.02t})^2$ or equivalent	A1	[6]	
	(ii)	State number approaches 1600 or equivalent, following expression of form $(c + de^{-0.02t})^n$	В1√	[1]	

Q27.

10	(i)	State	or imply $\frac{du}{dx} = \sec^2 x$	В1	
		Expr	ess integrand in terms of u and du	M1	
		Integ	erate to obtain $\frac{u^{n+1}}{n+1}$ or equivalent	A1	
		Subs	titute correct limits correctly to confirm given result $\frac{1}{n+1}$	A1	[4]
	(ii)	(a)	Use $\sec^2 x = 1 + \tan^2 x$ twice	Ml	
			Obtain integrand $\tan^4 x + \tan^2 x$	A1	
			Apply result from part (i) to obtain $\frac{1}{3}$	A1	[3]
			Or Use $\sec^2 x = 1 + \tan^2 x$ and the substitution from (i)	M1	
			Obtain $\int u^2 du$	A1	
			Apply limits correctly and obtain $\frac{1}{3}$	A1	
		(b)	Arrange, perhaps implied, integrand to $t^9 + t^7 + 4(t^7 + t^5) + t^5 + t^3$	B1	
			Attempt application of result from part (i) at least twice	M1	
a			Obtain $\frac{1}{8} + \frac{4}{6} + \frac{1}{4}$ and hence $\frac{25}{24}$ or exact equivalent	A1	[3]

Q28.

6 Separate variables correctly and attempt integration of one side	B1	
Obtain term $\ln x$	B1	
State or imply and use a relevant method to find A or B	M1	
Obtain $A = \overline{2}$, $B = \overline{2}$		
Integrate and obtain $-\frac{1}{2} \ln (1-y) + \frac{1}{2} \ln (1+y)$, or equivalent	A1 √	
[If the integral is directly stated as k_1 ln or k_2 ln give M1, and then A2 for		
$k_1 = \frac{1}{2} \text{ or } k_2 = -\frac{1}{2}$		
Evaluate a constant, or use limits $x = 2$, $y = 0$ in a solution containing terms $a \ln x$, $b \ln a$		
and $c \ln (1 + y)$, where $abc \neq 0$	M1	
[This M mark is not available if the integral of $1/(1-y^2)$ is initially taken to be of the fo	rm	
$k \ln (1 - y^2)$		
1		
Obtain solution in any correct form, e.g. $\overline{2} \ln = \ln x - \ln 2$	A1	
Rearrange and obtain $y = $, or equivalent, free of logarithms	A1 [8]

Q29.

4	Separate variables correctly and integrate one side Obtain $\ln y =$ or equivalent	M1 A1	
	Obtain = $3\ln(x^2+4)$ or equivalent	A1	
	Evaluate a constant or use $x = 0$, $y = 32$ as limits in a solution containing terms $a \ln y$ and $b \ln (x^2 + 4)$	M1	
	Obtain $\ln y = 3 \ln (x^2 + 4) + \ln 32 - 3 \ln 4$ or equivalent	Al	
	Obtain $y = \frac{1}{2}(x^2 + 4)$ or equivalent	Al	[6]

Q30.

7	(i)	State or imply $du = 2\cos 2x dx$ or equivalent Express integrand in terms of u and du	B1 M1	
		Obtain $\int \frac{1}{2}u^3(1-u^2) du$ or equivalent	A1	
		Integration to obtain an integral of the form $k_1 u^4 + k_2 u^6$, k_1 , $k_2 \neq 0$	M1	
		Use limits 0 and 1 or (if reverting to x) 0 and $\frac{1}{4}\pi$ correctly	DM1	
		Obtain $\frac{1}{24}$, or equivalent	A1	[6]
	(ii)	Use 40 and upper limit from part (i) in appropriate calculation Obtain $k = 10$ with no errors seen	M1 A1	[2]

Q31.

3	EITHEI	R: Integrate by parts and reach $kx^{\frac{1}{2}} \ln x - m \int x^{\frac{1}{2}} \frac{1}{x} dx$	Ml*	
		Obtain $2x^{\frac{1}{2}} \ln x - 2 \int \frac{1}{x^{\frac{1}{2}}} dx$, or equivalent	Al	
		Integrate again and obtain $2x^{\frac{1}{2}} \ln x - 4x^{\frac{1}{2}}$, or equivalent Substitute limits $x = 1$ and $x = 4$, having integrated twice Obtain answer $4(\ln 4 - 1)$, or exact equivalent	Al Ml(dep*) Al	
	OR1:	Using $u = \ln x$, or equivalent, integrate by parts and reach $kue^{\frac{1}{2}u} - m \int e^{\frac{1}{2}u} du$	MI*	
		Obtain $2ue^{\frac{1}{2}u} - 2\int e^{\frac{1}{2}u} du$, or equivalent	Al	
		Integrate again and obtain $2ue^{\frac{1}{2}u} - 4e^{\frac{1}{2}u}$, or equivalent Substitute limits $u = 0$ and $u = \ln 4$, having integrated twice Obtain answer $4\ln 4 - 4$, or exact equivalent	Al Ml(dep*) Al	
	OR2:	Using $u = \sqrt{x}$, or equivalent, integrate and obtain $ku \ln u - m \int u \cdot \frac{1}{u} du$	MI*	
		Obtain $4u \ln u - 4 \int \mathrm{Id}u$, or equivalent Integrate again and obtain $4u \ln u - 4u$, or equivalent	A1 A1	
		Substitute limits $u=1$ and $u=2$, having integrated twice or quoted $\int \ln u du$ as $u \ln u \pm u$ Obtain answer $8 \ln 2 - 4$, or exact equivalent	M1(dep*) A1	
	OR3:	Integrate by parts and reach $I = \frac{x \ln x \pm x}{\sqrt{x}} + k \int \frac{x \ln x \pm x}{x \sqrt{x}} dx$	MI*	
		Obtain $I = \frac{x \ln x - x}{\sqrt{x}} + \frac{1}{2}I - \frac{1}{2}\int \frac{1}{\sqrt{x}} dx$	Al	
		Integrate and obtain $I = 2\sqrt{x} \ln x - 4\sqrt{x}$, or equivalent Substitute limits $x = 1$ and $x = 4$, having integrated twice Obtain answer $4 \ln 4 - 4$, or exact equivalent	Al Ml(dep*) Al	[5]
22				

Q32.

5	(i)	Use Pythagoras Use the sin2A formula Obtain the given result	M1 M1 A1	[3]
	(ii)	Integrate and obtain a $k \ln \sin \theta$ or $m \ln \cos \theta$ term, or obtain integral of the $p \ln \tan \theta$	form M1*	
		Obtain indefinite integral $\frac{1}{2} \ln \sin \theta - \frac{1}{2} \ln \cos \theta$, or equivalent, or $\frac{1}{2} \ln \tan \theta$	Al	
		Substitute limits correctly	M1(den)*	

Obtain the given answer correctly having shown appropriate working

Q33.

10 (i) State or imply
$$V = \pi h^3$$

State or imply
$$\frac{dV}{dt} = -k\sqrt{h}$$

Use
$$\frac{dV}{dt} = \frac{dV}{dh} \cdot \frac{dh}{dt}$$
, or equivalent

[4]

[The M1 is only available if $\frac{dV}{dh}$ is in terms of h and has been obtained by a

correct method.1

[Allow B1 for $\frac{dV}{dt} = k\sqrt{h}$ but withhold the final A1 until the polarity of the constant

 $\frac{k}{3\pi}$ has been justified.]

Obtain terms
$$\frac{2}{5}h^{\frac{5}{2}}$$
 and $-At$, or equivalent

Use
$$t = 0$$
, $h = H$ in a solution containing terms of the form $ah^{\frac{5}{2}}$ and $bt + c$

Use
$$t = 60$$
, $h = 0$ in a solution containing terms of the form $ah^{\frac{5}{2}}$ and $bt + c$

Obtain a correct solution in any form, e.g.
$$\frac{2}{5}h^{\frac{5}{2}} = \frac{1}{150}H^{\frac{5}{2}}t + \frac{2}{5}H^{\frac{5}{2}}$$

(ii) Obtain final answer
$$t = 60 \left(1 - \left(\frac{h}{H} \right)^{\frac{5}{2}} \right)$$
, or equivalent

(iii) Substitute
$$h = \frac{1}{2}H$$
 and obtain answer $t = 49.4$

Q34.

2 Carry out complete substitution including the use of $\frac{du}{dx} = 3$

Obtain
$$\int \left(\frac{1}{3} - \frac{1}{3u}\right) du$$

Integrate to obtain form $k_1u + k_2 \ln u$ or $k_1u + k_2 \ln 3u$ where $k_1k_2 \neq 0$

Obtain
$$\frac{1}{3}(3x+1)-\frac{1}{3}\ln(3x+1)$$
 or equivalent, condoning absence of modulus signs and $+c$

[4]

Q35.

10	Use $2\cos^2 x = 1 + \cos 2x$ or equivalent	Bl
	Separate variables and integrate at least one side	M1
	Obtain $\ln(y^3 + 1) =$ or equivalent	Al
	Obtain = $2x + \sin 2x$ or equivalent	Al
	Use $x = 0$, $y = 2$ to find constant of integration (or as limits) in an expression containing	
	at least two terms of the form $a \ln(y^3 + 1)$, bx or $c \sin 2x$	M1*
	Obtain $\ln(y^3 + 1) = 2x + \sin 2x + \ln 9$ or equivalent e.g. implied by correct constant	Al
	Identify at least one of $\frac{1}{2}\pi$ and $\frac{3}{2}\pi$ as x-coordinate at stationary point	B1
	Use correct process to find y-coordinate for at least one x-coordinate	M1(d*M)
	Obtain 5.9	Al
	Obtain 48.1	AI [10]

Q36.

2 State
$$\frac{du}{dx} = 3\sec^2 x$$
 or equivalent B1

Express integral in terms of u and du (accept unsimplified and without limits) M1

Obtain $\int \frac{1}{3} u^{\frac{1}{2}} du$ A1

Integrate $Cu^{\frac{1}{2}}$ to obtain $\frac{2C}{3}u^{\frac{3}{2}}$ M1

Obtain $\frac{14}{9}$ A1 [5]

Q37.

4	Separate variables correctly and recognisable attempt at integration of at least one side	M1	
	Obtain ln y, or equivalent	B1	
	Obtain $k \ln(2 + e^{3x})$	B1	
	Use $y(0) = 36$ to find constant in $y = A(2 + e^{3x})^k$ or $\ln y = k \ln(2 + e^{3x}) + c$ or equivalent	M1*	
	Obtain equation correctly without logarithms from $\ln y = \ln \left(A \left(2 + e^{3x} \right)^k \right)$	*M1	
	Obtain $y = 4(2 + e^{3x})^2$	A1	[6]

Q38.

_		ъ.	
5	Separate variables correctly and attempt integration of at least one side	B 1	
	Obtain term in the form $a\sqrt{(2x+1)}$	M1	
	Express $1/(\cos^2 \theta)$ as $\sec^2 \theta$	B 1	
	Obtain term of the form $k \tan \theta$	M1	
	Evaluate a constant, or use limits $x = 0$, $\theta = \frac{1}{4}\pi$ in a solution with terms $a\sqrt{(2x+1)}$ and $k \tan \theta$,		
	$ak \neq 0$	M1	
	Obtain correct solution in any form, e.g. $\sqrt{(2x+1)} = \frac{1}{2} \tan \theta + \frac{1}{2}$	A1	
	Rearrange and obtain $x = \frac{1}{8} (\tan \theta + 1)^2 - \frac{1}{2}$, or equivalent	A1	7
Q39).		
8	(i) Use a correct method for finding a constant	M1	
	Obtain one of $A = 3$, $B = 3$, $C = 0$	A1	
	Obtain a second value	A1	
	Obtain a third value	A1	4

B1√

M1

A1√

A1

5

Q40.

(ii) Integrate and obtain term $-3\ln(2-x)$

Obtain term $\frac{3}{2}\ln(2+x^2)$

Integrate and obtain term of the form $k \ln(2+x^2)$

Obtain given answer after full and correct working

2 (i)		State or imply ordinates 2, 1.1547, 1, 1.1547		
		Use correct formula, or equivalent, with $h = \frac{1}{6}\pi$ and four ordinates	M1	
		Obtain answer 1.95	A1	[3]
	(ii)	Make recognisable sketch of $y = \csc x$ for the given interval	B1	
		Justify a statement that the estimate will be an overestimate	B1	[2]

Substitute limits correctly in an integral of the form $a \ln(2-x) + b \ln(2+x^2)$, where $ab \neq 0$ M1

Q41.

7	(i)	Separate variables correctly and attempt to integrate at least one side		
		Obtain term lnR	B1	
		Obtain $\ln x - 0.57x$	Bl	
		Evaluate a constant or use limits $x = 0.5$, $R = 16.8$, in a solution containing terms of the form $a \ln R$ and $b \ln x$ Obtain correct solution in any form	M1 A1	
		Obtain a correct expression for R, e.g. $R = xe^{(3.80 - 0.57x)}$, $R = 44.7xe^{-0.57x}$ or		
		$R = 33.6xe^{(0.285 - 0.57x)}$	Al	[6]
	(ii)	Equate $\frac{dR}{dx}$ to zero and solve for x	Ml	
		State or imply $x = 0.57^{-1}$, or equivalent, e.g. 1.75	Al	
		Obtain $R = 28.8$ (allow 28.9)	A1	[3]

Q42.

6	(i)	State or imply correct ordinates 1, 0.94259, 0.79719, 0.62000		B1	
		Use cor	rect formula or equivalent with $h = 0.1$ and four y values	M1	
		Obtain	0.255 with no errors seen	A1	[3]
	(ii)	Obtain	or imply $a = -6$	B 1	
		Obtain x^4 term including correct attempt at coefficient		M1	
		Obtain or imply $b = 27$		A1	
		Either	Integrate to obtain $x - 2x^3 + \frac{27}{5}x^5$, following their values of a and b	В1√	
			Obtain 0.259	B1	
		Or	Use correct trapezium rule with at least 3 ordinates	M1	
			Obtain 0.259 (from 4)	A1	[5]

Q43.

8 (i)	(i) Sensibly separate variables and attempt integration of at least one side		
	Obtain $2y^{\frac{1}{2}} =$ or equivalent	A 1	
	Correct integration by parts of $x \sin \frac{1}{3}x$ as far as $ax \cos \frac{1}{3}x \pm \int b \cos \frac{1}{3}x dx$	M1	
	Obtain $-3x\cos\frac{1}{3}x + \int 3\cos\frac{1}{3}x dx$ or equivalent		
	Obtain $-3x\cos\frac{1}{3}x + 9\sin\frac{1}{3}x$ or equivalent	A1	
	Obtain $y = \left(-\frac{3}{10}x\cos\frac{1}{3}x + \frac{9}{10}\sin\frac{1}{3}x + c\right)^2$ or equivalent	A1	[6]
(ii)	Use $x = 0$ and $y = 100$ to find constant	M*1	
	Substitute 25 and calculate value of <i>y</i> Obtain 203	DM*1 A1	[3]

Q44.

10	State or imply $\frac{du}{dx} = e^x$	B1
----	--------------------------------------	----

Substitute throughout for x and dx M1

Obtain
$$\int \frac{u}{u^2 + 3u + 2} du$$
 or equivalent (ignoring limits so far)

State or imply partial fractions of form
$$\frac{A}{u+2} + \frac{B}{u+1}$$
, following their integrand B1

Carry out a correct process to find at least one constant for their integrand M1

Obtain correct
$$\frac{2}{u+2} - \frac{1}{u+1}$$

Integrate to obtain
$$a \ln(u+2) + b \ln(u+1)$$
 M1

Obtain
$$2\ln(u+2) - \ln(u+1)$$
 or equivalent, follow their A and B

Obtain given answer
$$\ln \frac{8}{5}$$
 legitimately A1 [10]

SR for integrand
$$\frac{u^2}{u(u+1)(u+2)}$$

State or imply partial fractions of form
$$\frac{A}{u} + \frac{B}{u+1} + \frac{C}{u+2}$$
 (B1)

Obtain correct
$$\frac{2}{u+2} - \frac{1}{u+1}$$
 (A1)

...complete as above.