Q1.

	1 EITH	ER: State or imply non-modular inequality $(x - 4)^2 > (x + 1)^2$, or corresponding equation Expand and solve a linear inequality, or equivalent Obtain critical value $1\frac{1}{2}$ State correct answer $x < 1\frac{1}{2}$ (allow \leq)	B1 M1 A1 A1	
	OR:	State a correct linear equation for the critical value e.g. $4 - x = x + 1$ Solve the linear equation for x Obtain critical value $1\frac{1}{2}$, or equivalent State correct answer $x < 1\frac{1}{2}$	B1 M1 A1 A1	
	OR:	State the critical value $1\frac{1}{2}$, or equivalent, from a graphical method or inspection or by solving a linear inequality State correct answer $x < 1\frac{1}{2}$	by B3 B1	
			[4]	
Q2.				
1	EITHER	State or imply non-modular inequality $x^2 > (3x - 2)^2$, or corresponding equation	M1	
		Expand and make reasonable solution attempt at 2- or 3-term quadratic, or equivalent	M1	
		Obtain critical values ½ and 1	A1	
		State correct answer $\frac{1}{2} < x < 1$	A1	
	OR	State one correct linear equation for a critical value	M1	
		State two equations separately	A1	
		Obtain critical values ½ and 1	A1	
		State correct answer $\frac{1}{2} < x < 1$	A1	
	OR	State one critical value from a graphical method or inspection or by solving a linear inequality	B1	
		State the other critical value correctly State correct answer $\frac{1}{2} < x < 1$	B2 B1	
Q3.				
â	ETTHER	State or imply non-modular inequality $(2x-7)^2 > 3^2$, or corresponding equation	MI	
	1000	Obtain critical values 2 and 5	AL	
	140	State correct answer $x \in \mathcal{I}, x > 5$	AI	
	OR.	State one critical value, $c.g. x = 5$, by solving a linear equation (or inequality) or from a	BI	
		graphical method or by inspection State the other critical value correctly	BI	
		State correct hasver $x < 2$, $x > 5$	B1	j
		And the second of the second o		

Q4.

1	EITHER	State or imply non-modular inequality $(x-3)^2 > (x+2)^2$, or corresponding equation	M1	
		Expand and solve a linear inequality, or equivalent	M1	
		Obtain critical value $\frac{1}{2}$	A1	
		State correct answer $x < \frac{1}{2}$ (allow $x \le \frac{1}{2}$)	A1	
	OR	State a correct linear equation for the critical value, e.g. $3 - x = x + 2$,		
		or corresponding correct inequality, e.g. $-(x-3) > (x+2)$	M1	
		Solve the linear equation, or inequality	M1	
		Obtain critical value $\frac{1}{2}$	A1	
		State correct answer $x < \frac{1}{2}$	A1	
	OR	Make recognisable sketches of both $y = x-3 $ and $y = x+2 $ on a		
		single diagram	B1	
		Obtain a critical value from the intersection of the graphs	M1	
		Obtain critical value $\frac{1}{2}$	A1	
		State final answer $x < \frac{1}{2}$	A1	[4]

Q5.

1	EITHER	State or imply non-modular inequality $(3x - 1)^2 < 2^2$, or corresponding equation or pair of linear equations	M1	
		Obtain critical values $-\frac{1}{3}$ and 1	A1	
		State correct answer $-\frac{1}{3} \le x \le 1$	A1	
	OR	State one critical value, e.g. $x = 1$, by solving a linear equation (or		
		inequality) or from a graphical method or by inspection State the other critical value correctly	B1 B1	
		State correct answer $-\frac{1}{2} < x < 1$	B1	[3]

Q6.

EITHER: State or imply non-modular inequality $(3x + 2)^2 < x^2$, or corresponding quadratic equation, or pair of linear equations $3x + 2 = \pm x$ Make reasonable solution attempt at a 3-term quadratic, or solve two linear equations M1 Obtain critical values x = -1 and $x = -\frac{1}{2}$ A1 State answer $-1 < x < -\frac{1}{2}$ A1 OR: Obtain the critical value x = -1 from a graphical method or by inspection, or by solving a linear equation or inequality B₁ Obtain the critical value $x = -\frac{1}{2}$ similarly B2 State answer $-1 < x < -\frac{1}{2}$ B1 [4]

Q7.

1	EITHER:	State or imply non-modular inequality $(2x-3)^2 > 5^2$, or corresponding equation or pair of linear equations Obtain critical values -1 and 4 State correct answer $x < -1, x > 4$	M1 A1 A1	
	OR:	State one critical value, e.g. $x = 4$, having solved a linear equation (or inequality) or from a graphical method or by inspection State the other critical value correctly State correct answer $x < -1$, $x > 4$	B1 B1 B1	[3]
Q8.				
3	EITHE	R State or imply non-modular inequality $(2x-1)^2 < (x+4)^2$, or corresponding equation or pair of linear equations Make reasonable solution attempt at a 3-term quadratic, or solve two linear equations	M1 M1	
	OR	Obtain critical values -1 and 5 State correct answer $-1 < x < 5$ Obtain one critical value, e.g. $x = 5$, by solving a linear equation (or inequality) or from a graphical method or by inspection Obtain the other critical value similarly State correct answer $-1 < x < 5$	A1 A1 B1 B2 B1	[4]
Q9.				
1	EITHER	Attempt to square both sides obtaining three terms on each side Attempt solution of three-term quadratic equation Obtain $5x + 4x - 9 = 0$ and hence $-\frac{9}{5}$ and 1	M1 M1 A1	
	OR	Obtain value 1 from graphical method, inspection or linear equation Obtain value $-\frac{9}{5}$ similarly	B1 B2	[3]
Q10	•			
1	<u>Or</u> :	Obtain value $x^3 = 27$ from inspection, equation, Obtain value $x^3 = 1$ similarly Obtain $x = 1$ and $x = 3$ Attempt to square both sides obtaining 3 terms on LHS Attempt solution for x^3 of 3-term quadratic Obtain $x^3 = 1$ and $x^3 = 27$ Obtain $x = 1$ and $x = 3$	B1 B2 B1 M1 DM1 A1	[4]

Q11.

1	Either:	State or imply non-modular inequality $(x+3)^2 < (2x+1)^2$ or corresponding equation or pair of linear equations Attempt solution of 3-term quadratic or of 2 linear equations Obtain critical values $-\frac{4}{3}$ and 2 State answer $x<-\frac{4}{3}$, $x>2$ Obtain critical value $x=2$ from graphical method, inspection, equation Obtain critical value $x=-\frac{4}{3}$ similarly State answer $x<-\frac{4}{3}$, $x>2$	B1 M1 A1 A1 B1 B2	[4]
Q12	<u>.</u>			
1	<u>Either</u>	State or imply non-modular equation $(2^x - 7)^2 = 1^2$, or corresponding pair of equations Obtain $2^x = 8$ and $2^x = 6$ State answer 3 Use logarithmic method to solve an equation of the form $2^x = k$, where $k > 0$ State answer 2.58	M1 A1 B1 M1 A1	
	<u>Or</u>	State or imply one value for 2^x , e.g. 8, by solving an equation or by inspection State answer 3 State second value for 2^x Use logarithmic method to solve an equation of the form $2^x = k$, where $k > 0$ State answer 2.58	B1 B1 B1 M1	[5]
Q13	3.			
2	Either	State or imply non-modular inequality $(x-8)^2 > (2x-4)^2$, or corresponding equation or pair of linear equations Make reasonable solution attempt at a quadratic, or solve two linear equations Obtain critical values 4 and -4 State correct answer $-4 < x < 4$	M1 M1 A1	
	<u>Or</u>	Obtain one critical value, e.g. $x = 4$, by solving a linear equation (or inequality) or from a graphical method or by inspection Obtain the other critical value similarly State correct answer $-4 < x < 4$	B1 B2 B1	[4]

Q14.

1	EITHER:	State or imply non-modular inequality $(2x-1)^2 < (3x)^2$, or con-				B1	11.2
		Expand and make reasonable solution attempt at 2/01 3-term qu	adratic, or equivalent			M1	0
		Obtain critical values -1 and $\frac{1}{5}$				A1	
		State correct answer $x < -1$, $x > \frac{1}{5}$	22 22			Al	
	OR:	State one correct equation for a critical value e.g. $2x - 1 = 3x$				M1	0
		State two relevant equations separately e.g. $2x - 1 = 3x$ and $2x - 1 = 3x$	-1=-3x			A1	
		Obtain critical values -1 and $\frac{1}{5}$				A1	
		State correct answer $x < -1$, $x > \frac{1}{5}$			4	A1	100
	OR:	State one critical value (probably $x = -1$), from a graphical met	hod or by inspection or	by			50
•		solving a linear inequality	ahi .		5	BI	
		State the other critical value correctly	W 11 19			B2	
		State correct answer $x < -1$, $x > \frac{1}{5}$				B1	-4
		[The answer $\frac{1}{5} < x < -1$ scores B0.]		9.0	11.0		

Q15.

1	EITHER:	State or imply non-modular inequality e.g. $-2 < 8-3x < 2$, or $(8-3x)^2 < 2^2$, or corresponding equation or pair of equations	M1
		Obtain critical values 2 and $3\frac{1}{3}$	A1
		State correct answer $2 < x < 3\frac{1}{3}$	A1
	OR:	State one critical value (probably $x = 2$), from a graphical method or by inspection or by solving a linear equality or equation State the other critical value correctly	B1 B1
		State correct answer $2 < x < 3\frac{1}{3}$	B1
			[3]

Q16.

1		State or imply non-modular inequality $(x + 1)^2 > x^2$ or corresponding equation or linear equation $x + 1 = -x$	ng B1	
	3 · PANY (1984)	Obtain critical value $-\frac{1}{2}$	B1	
		State answer $x > -\frac{1}{2}$	B1	
	OR:	Obtain critical value $-\frac{1}{2}$ by solving a linear inequality or by		
		graphical method or inspection	B2	
		State answer $x > -\frac{1}{2}$	B1	3
	[For 2x +	$1 > 0, x > +\frac{1}{2}$, or similar reasonable method]	M1	

Q17.

		1	Use logarithms to obtain a linear inequality in z , or corresponding equation Obtain critical value 3.11, or exact equivalent Obtain unswer $z>3.11$	M) A))
Q1	8.						
1		EITHE	ER: State or imply non-modular inequality $(2x-1)^2 > x^2$ or corresponding quadratic equation or pair of linear equations $2x-1=\pm x$ Make reasonable solution attempt at a 3-term quadratic, or solve two linear equations	MI MI			
			Obtain critical values $x = 1$ and $x = \frac{1}{3}$	AI			
			State answer $x < \frac{1}{3}, x > 1$	A1			
		C	OR: Obtain critical value x = 1 from a graphical method, or by inspection, or by solving a linear inequality or linear equation. Obtain the critical value x = ¹ / ₃ similarly.	B1 B2			
			State answer $x < \frac{1}{3}$, $x > 1$	Bi		9	4
Q1	102.9		ain critical values 4 and 6 te answer $4 < y < 6$	B1 B1	[[2]	
	(ii)	(ii) Use correct method for solving an equation of the form $3^x = a$, where $a > 0$ Obtain one critical value, i.e. either 1.26 or 1.63		M1 A1 A1	[[3]	
Q2	0.						
1	EIT	HER:	State or imply non-modular inequality $(x-3)^2 > (2x)^2$ or corresponding quadratic				
			equation or pair of linear equations $(x-3)=\pm 2x$ Make reasonable solution attempt at a 3-term quadratic, or solve two linear equations Obtain critical values $x=1$ and $x=-3$ State answer $-3 < x < 1$	M1 M1 A1 A1			
		OR:	Obtain critical value $x = -3$ from a graphical method, or by inspection, or by solving a linear inequality or linear equation Obtain the critical value $x = 1$ similarly State answer $-3 < x < 1$	B1 B2 B1		[4]	

Q21.

EITHER:			
		MI	
	Make reasonable solution attempt at a 3-term quadratic, or solve two linear		
	equations	M1	
	Obtain critical values $x = -6$ and $x = 0$	A1	
	State answer $-6 < x < 0$	A1	
OR:	obtain the critical value $x = -6$ from a graphical method or by inspection, or by		
	solving a linear equation or inequality	B 1	
	Obtain the critical value $x = 0$ similarly	B2	
	State answer $-6 < x < 0$	B 1	[4]
		Obtain critical values $x = -6$ and $x = 0$ State answer $-6 < x < 0$ OR: obtain the critical value $x = -6$ from a graphical method or by inspection, or by solving a linear equation or inequality Obtain the critical value $x = 0$ similarly	quadratic equation, or pair of linear equations $2x + 3 = \pm(x - 3)$ M1 Make reasonable solution attempt at a 3-term quadratic, or solve two linear equations M1 Obtain critical values $x = -6$ and $x = 0$ A1 State answer $-6 < x < 0$ A1 OR: obtain the critical value $x = -6$ from a graphical method or by inspection, or by solving a linear equation or inequality B1 Obtain the critical value $x = 0$ similarly B2

Q22.

1	EITHER:	Obtain a non-modular inequality from $(x + 3)^2 > (2x)^2$, or corresponding		
		equation, or pair of linear equations $(x + 3) = \pm 2x$	M1	
		Make reasonable solution attempt at a 3-term quadratic, or solve two linear		
		equations	M1	
		Obtain critical values $x = -1$ and $x = 3$	A1	
		State answer $-1 < x < 3$	A1	
	OR:	Obtain critical value $x = 3$ from a graphical method, or by inspection, or by solving		
		a linear inequality or linear equation	B1	
		Obtain the critical value $x = -1$ similarly	B2	
		State answer $-1 < x < 3$	B1	[4]

Q23.

1	EITHER:	State or imply non-modular inequality $(x+1)^2 > (x-4)^2$, or corresponding		
		equation or pair of linear equations	M1	
		Obtain critical value $\frac{3}{2}$	A1	
		State correct answer $x > \frac{3}{2}$	A1	
	OR:	State a correct linear equation for the critical value, e.g. $x + 1 = -x + 4$, or corresponding correct linear inequality, e.g. $x + 1 > -(x - 4)$	M1	
		Obtain critical value $\frac{3}{2}$	A1	
		State correct answer $x > \frac{3}{2}$	A1	[3]

Q24.

1 EITHER State or imply non-modular inequality $(3x + 1)^2 > 8^2$, or corresponding equation or pair of linear equations M1 Obtain critical values $\frac{7}{3}$ or -3A1 State correct answer x < -3 or $x > \frac{7}{3}$ A1 OR State one critical value, e.g. x = -3, by solving a linear equation (or inequality) or from a graphical method or by inspection State the other critical value correctly B1 State correct answer x < -3 or $x > \frac{7}{3}$ B1 [3]

Q25.

1	EITHER	State or imply non-modular inequality $(4 - 5x)^2 < 3^2$, or corresponding equation or pair of linear equations	M1	
		Obtain critical values $\frac{1}{5}$ and $\frac{7}{5}$	A 1	
		State correct answer $\frac{1}{5} < x < \frac{7}{5}$	A1	
	OR	State one critical value, e.g. $x = \frac{1}{5}$, by solving a linear equation (or inequality)		
		or from a graphical method or by inspection	B 1	
		State the other critical value correctly	B1	
		State correct answer $\frac{1}{5} < x < \frac{7}{5}$	B1	[3]

Q26.

1	EITHER	State or imply non-modular inequality $(x+2)^2 > \left(\frac{1}{2}x-2\right)^2$, or corresponding		
		equation or pair of linear equations	M1	
		Make reasonable solution attempt at a 3-term quadratic, or solve two linear		
		equations	M1	
		Obtain critical values –8 and 0	A1	
		State correct answer $x < -8$ or $x > 0$	A1	
	OR	Obtain one critical value, e.g. $x = -8$, by solving a linear equation (or inequality	y) or	
		from a graphical method or by inspection	B1	
		Obtain the other critical value similarly	B2	
		State correct answer $x < -8$ or $x > 0$	B1	[4]

Q27.

2	EITHER	State or imply non-modular inequality $(2x - 3)^2 \le (3x)^2$, or corresponding equation or pair of linear equations	M1	
		Make reasonable solution attempt at a 3-term quadratic, or solve two linear equations	M1	
		Obtain critical values -3 and $\frac{3}{5}$	A1	
		State correct answer $x \le -3$ or $x \ge \frac{3}{5}$	A1	
	OR	State one critical value, e.g. $x = -3$, by solving a linear equation (or inequality)		
		or from a graphical method or by inspection	B1	
		State the other critical value correctly	B2	
		State correct answer $x \le -3$ or $x \ge \frac{3}{5}$	B1	[4]

Q28.

1

EITHER	State or imply non-modular inequality $(x-2)^2 \ge (x+5)^2$, or		
	corresponding equation or pair of linear equations	M1	
	Obtain critical value $-\frac{3}{2}$	A1	
	State correct answer $x \le -\frac{3}{2}$	A1	
OR	State a correct linear equation for the critical value, e.g. $x - 2 = -x - 5$,		
	or corresponding correct linear inequality, e.g. $x-2 \ge -x-5$	M1	
	Obtain critical value $-\frac{3}{2}$	A1	
	State correct answer $x \le -\frac{3}{2}$	A1	[3]

Q29.

1	EITHER	State or imply non-modular inequality $(2x+1)^2 < (2x-5)^2$, or	M1	
		corresponding equation or pair of linear equations		
		Obtain critical value 1	A1	
		State correct answer $x < 1$	A1	
	OR	State the critical value $x = 1$, by solving a linear equation (or		
		inequality) or from a graphical method or by inspection	B2	
		State correct answer $x < 1$	B1 [3]	

Q30.

1	Either	State or imply non-modular inequality $(x+1)^2 < (3x+5)^2$, or		
		corresponding equation or pair of linear equations	M1	
		Make reasonable solution attempt at a 3-term quadratic, or solve		
		two linear equations	M1	
		Obtain critical values -2 and $-\frac{3}{2}$	A1	
		State correct answer $x < -2$ or $x > -\frac{3}{2}$	A1	
	<u>Or</u>	Obtain one critical value, e.g. $x = -2$, by solving a linear equation (or inequality)		
		or from a graphical method or by inspection	B1	
		Obtain the other critical value similarly	B2	
		State correct answer $x < -2$ or $x > -\frac{3}{2}$	B1	[4]

Q31.

1	Either	State or imply non-modular inequality $(3x-2)^2 > (x+4)^2$ or corresponding equation		
		or pair of linear equations Attempt solution of 3-term quadratic equation or of 2 linear equations	B1 M1	
		Obtain critical values $-\frac{1}{2}$ and 3	A1	
		State answer $x < -\frac{1}{2}$, $x > 3$	A1	[4]
	Or	Obtain critical value $x = 3$ from graphical method, inspection, equation	В1	
		Obtain critical value $x = -\frac{1}{2}$ similarly	B2	
		State answer $x < -\frac{1}{2}, x > 3$	B1	[4]

P3 (variant1 and 3)

Q1.

nding B1	
M1	
A1	
A1	
or by B1 B2	
B1	[4]
	B1 linear M1 A1 A1 or by B1 B2

Q2.

1	EITHE	R: State or imply non-modular inequality $(x-3)^2 > (2(x+1))^2$, or corresponding quadratic		
		equation, or pair of linear equations $(x-3) = \pm 2(x+1)$	B1	
		Make reasonable solution attempt at a 3-term quadratic, or solve two linear equations	M1	
		Obtain critical values -5 and $\frac{1}{3}$	A1	
		State answer $-5 < x < \frac{1}{3}$	A1	
	OR:	Obtain the critical value $x = -5$ from a graphical method, or by inspection,		
		or by solving a linear equation or inequality	B 1	
		Obtain the critical value $x = \frac{1}{3}$ similarly	B2	
		State answer $-5 < x < \frac{1}{3}$	B1	[4]
		[Do not condone \leq for \leq ; accept 0.33 for $\frac{1}{3}$.]		

Q3.

1	EITHER	R: State or imply non-modular inequality $(4x + 3)^2 > x^2$, or corresponding equation		
		or pair of equations $4x + 3 = \pm x$	M1	
		Obtain a critical value, e.g1	A1	
		Obtain a second critical value, e.g. $-\frac{3}{5}$	A1	
		State final answer $x < -1, x > -\frac{3}{5}$	A1	
	OR:	Obtain critical value $x = -1$, by solving a linear equation or inequality, or from a graphimethod or by inspection	ical B1	
		Obtain the critical value $-\frac{3}{5}$ similarly	B2	
		State final answer $x < -1, x > -\frac{3}{5}$	B1	[4]
		[Do not condone \leq or \geq .]		

Q4.

1	EITHER:	State or imply non-modular inequality $(2-3x)^2 < (x-3)^2$, or corresponding equation		
		and make a reasonable solution attempt at a 3-term quadratic	M1	
		Obtain critical value $x = -\frac{1}{2}$	A1	
		Obtain $x > -\frac{1}{2}$	A1	
		Fully justify $x \ge -\frac{1}{2}$ as only answer	A1	
	OR1:	State the relevant critical linear equation, i.e. $2 - 3x = 3 - x$	B1	
		Obtain critical value $x = -\frac{1}{2}$	B 1	
		Obtain $x > -\frac{1}{2}$	B1	
		Fully justify $x > -\frac{1}{2}$ as only answer	B1	
	OR2:	Obtain the critical value $x = -\frac{1}{2}$ by inspection, or by solving a linear inequality	B2	
		Obtain $x > -\frac{1}{2}$	B1	
		Fully justify $x > -\frac{1}{2}$ as only answer	B 1	
	OR3:	Make recognisable sketches of $y = 2 - 3x$ and $y = x - 3 $ on a single diagram	B1	
		Obtain critical value $x = -\frac{1}{2}$	B1	
		Obtain $x > -\frac{1}{2}$	B1	
		Fully justify $x > -\frac{1}{2}$ as only answer	B1	[4]
		[Condone \geq for $>$ in the third mark but not the fourth.]		
Q5.				
	FITHER	Section 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.		
1	EITHER:	State or imply non-modular inequality $(2(x-3))^2 > (3x+1)^2$, or corresponding quadratic equation, or pair of linear equations $2(x-3) = \pm (3x+1)$	B1	
		Make reasonable solution attempt at a 3-term quadratic, or solve two linear	ы	
		equations	M1	
		Obtain critical values $x = -7$ and $x = 1$	A1	
		State answer $-7 < x < 1$	A1	
	OR:	Obtain critical value $x = -7$ or $x = 1$ from a graphical method, or by inspection,		
		or by solving a linear equation or inequality	B1	

B2

B1 [4]

Obtain critical values x = -7 and x = 1

State answer -7 < x < 1

[Do not condone: < for <.]

Q6.

1	EITHER	State or imply non-modular inequality $(3(x-1))^2 < (2x+1)^2$		
		or corresponding quadratic equation, or pair of linear equations $3(x-1) = \pm (2x+1)$	B 1	
		Make reasonable solution attempt at a 3-term quadratic, or solve two linear equations	M1	
		Obtain critical values $x = \overline{5}$ and $x = 4$	A1	
		$\frac{2}{}$		
		State answer $\frac{1}{5} < x < 4$	A1	
		2		
	OR	Obtain critical value $x = \overline{5}$ or $x = 4$ from a graphical method, or by inspection, or		
	by			
		solving a linear equation or inequality	B 1	
		Obtain critical values $x = \frac{z}{5}$ and $x = 4$	Da	
		Obtain critical values $x = \frac{1}{2}$ and $x = 4$	B2	
		State answer $\frac{2}{5} < x < 4$	B 1	[4]
		[Do not condone ≤ for ≤ .]		

Q7.

1	Either	State or imply non-modular inequality $(3x-1)^2 < (2x+5)^2$ or corresponding		
		quadratic equation or pair of linear equations $3x-1=\pm(2x+5)$	B1	
		Solve a three-term quadratic or two linear equations $5x^2 - 26x - 24 < 0$	M1	
		Obtain $-\frac{4}{5}$ and 6	A1	
		State $-\frac{4}{5} < x < 6$	A1	
	Or	Obtain value 6 from graph, inspection or solving linear equation	В1	
		Obtain value $-\frac{4}{5}$ similarly	B2	
		State $-\frac{4}{5} < x < 6$	B1	[4]