Q1.

7 (i) State
$$\frac{dx}{d\theta} = 2 - 2\cos 2\theta$$
 or $\frac{dy}{d\theta} = 2\sin 2\theta$

Use $\frac{dy}{dx} = \frac{dy}{d\theta} \div \frac{dx}{d\theta}$

Obtain answer $\frac{dy}{dx} = \frac{2\sin 2\theta}{2 - 2\cos 2\theta}$ or equivalent

Make relevant use of sin 2A and cos 2A formulae

Obtain given answer correctly

(ii) Substitute $\theta = \frac{1}{2}\pi$ in $\frac{dy}{dx}$ and both parametric equations

M1

Obtain $\frac{dy}{dx} = 1$, $x = \frac{1}{2}\pi - 1$, $y = 2$

A1

Obtain equation $y = x + 1.43$, or any exact equivalent

A1 $\sqrt{\frac{3}{2}}$

(iii) State or imply that tangent is horizontal when $\theta = \frac{1}{2}\pi$ or $\frac{3}{2}\pi$

B1

Obtain a correct pair of x , y or x - or y -coordinates

State correct answers $(\pi, 3)$ and $(3\pi, 3)$

B1

O22.

(ii) Substitute t = 1 in $\frac{dy}{dx}$ and both parametric equations

Obtain $\frac{dy}{dx} = -1$ and coordinates (2, 5)

State equation of tangent in any correct horizontal form e.g. x + y = 7 A1 $\sqrt{3}$

M1

(iii) Equate $\frac{dy}{dx}$ to zero and solve for t

Obtain answer t = 2
Obtain answer y = 4

A1
A1

Show by any method (but <u>not</u> via $\frac{d}{dt}(y')$) that this is a minimum point A1 4

Q3.

5	(i)	Differentiate using chain or quotient rule Obtain derivative in any correct form	M1 A1	
		Obtain given answer correctly	A1	3
		State $\frac{dx}{d\theta} = \sec^2 \theta$, or equivalent	B1	
		Use $\frac{dy}{dx} = \frac{dy}{d\theta} \div \frac{dx}{d\theta}$	M1	
		Obtain given answer correctly	A1	3

© University of Cambridge International Examinations 2005

Syllabus Paper

GCE AS LEVEL – JUNE 2005	9709	2	
State that $\theta = \frac{\pi}{6}$		B1	
Obtain x-coordinate 1 + $\frac{1}{\sqrt{3}}$, or equivalent		B1	
Obtain y-coordinate $\frac{2}{\sqrt{3}}$, or equivalent		B1	3

Mark Scheme

Q4.

Page 2

(iii)

3	State correct derivative 1 – 2sin x Equate derivative to zero and solve for x	M)	
	Obtain answer $s = \frac{1}{5}\pi$	All	
	Carry out an appropriate method for determining the nature of a stationary point. Show that $x = \frac{1}{6}\pi$ is a maximum with no errors seen	M1 Al	
	Obtain second unswer $x = \frac{x}{a} \mp in range$	ALC	
	Show this is a minimum point [f.r. is on the incorrect derivative $1 + 2\sin x$.]	AI/	7

Q5.

5	(i) State $2y \frac{dy}{dx}$ as the derivative of y^2	Bi	
	State $2v * 2x \frac{dy}{dx}$ or equivalent, as derivative of $2xy$	ВІ	
	Equate attempted derivative of LHS to zero and set $\frac{dv}{dx}$ equal to zero	MŁ	
	Obtain given relation y = -3x correctly [The M1 is dependent on at least one B1 being carried sarrier.]	AI	4
	 (ii) Carry out complete method for finding x² or γ² 	MI	
	Obtain $e^2 = 1$ or $v^2 = 9$.	Al	
	Obtain point (1, -3)	A1	
	Obtain second point (-1, 5)	AL	

Q6.

3 (i)	State $\frac{dx}{dt} = 3 + \frac{1}{t-1}$ or $\frac{dy}{dt} = 2t$	B1	
	Use $\frac{dy}{dx} = \frac{dy}{dt} \div \frac{dx}{dt}$	M1	
	Obtain $\frac{dy}{dt}$ in any correct form, e.g. $\frac{2t(t-1)}{3t-2}$	A1	[3]
(ii)	Equate derivative to 1 and solve for t	M1	
	Obtain roots 2 and $\frac{1}{2}$	A1	
	State or imply that only $t = 2$ is admissible c.w.o.	A1	
	Obtain coordinates (6, 5)	A1	[4]

Q7.

6	(i)	Use product rule	M1*	
		Obtain correct derivative in any form, e.g. $(x-1)e^x$	A1	
		Equate derivative to zero and solve for x	M1* (dep)	
		Obtain $x = 1$	A1	
		Obtain $y = -e$	A1	[5]
	(ii)	Carry out a method for determining the nature of a stationary point	M1	
		Show that the point is a minimum point, with no errors seen	A1	[2]

Q8.

(i) State $2y \frac{dy}{dx}$ as derivative of y^2 , or equivalent B1State $4y + 4x \frac{dy}{dx}$ as derivative of 4xy, or equivalent B1Equate derivative of LHS to zero and solve for $\frac{dy}{dx}$ M1 Obtain given answer correctly [4] A1 [The M1 is dependent on at least one of the B marks being obtained.] (ii) State or imply that the coordinates satisfy 2y - x = 0**B**1 Obtain an equation in x^2 (or y^2) M1 Solve and obtain $x^2 = 4$ (or $y^2 = 1$) A1 State answer (2, 1) A1

A1

[5]

Q9.

State answer (-2, -1)

4 State
$$\frac{dx}{d\theta} = 4 \cos \theta$$
 B1

State $\frac{dy}{d\theta} = 4 \sin 2\theta$, or equivalent

Use $\frac{dy}{dx} = \frac{dy}{d\theta} \div \frac{dx}{d\theta}$ M1

Obtain $\frac{dy}{dx}$ in any correct form, e.g. $\frac{\sin 2\theta}{\cos \theta}$ A1

Simplify and obtain answer $2 \sin \theta$ A1 [5]

[The f.t. is on gradients of the form $k \sin 2\theta / \cos \theta$, or equivalent.]

Q10.

6 (i) State
$$2xy + x^2 \frac{dy}{dx}$$
 as derivative of x^2y B1

State $2y \frac{dy}{dx}$ as derivative of y^2 B1

Equate derivatives of LHS and RHS, and solve for $\frac{dy}{dx}$ M1

Obtain given answer A1 [4]

(ii) Substitute and obtain gradient $\frac{2}{5}$, or equivalent

Form equation of tangent at the given point (1, 2)

Obtain answer $2x - 5y + 8 = 0$, or equivalent

[The M1 is dependent on at least one of the B marks being obtained.]

Q11.

5	(i)	Use product rule	M1	
		Obtain correct derivative in any form	A1	
		Show that derivative is equal to zero when $x = 3$	A1	[3]
	(ii)	Substitute $x = 1$ into gradient function, obtaining $2e^{-1}$ or equivalent	M1	
		State or imply required y-coordinate is e ⁻¹	B1	
		Form equation of line through (l, e ⁻¹) with gradient found (NOT the normal)	M1	
		Obtain equation in any correct form	A1	[4]

Q12.

2	State $\frac{dx}{dt} = 3 + 2\cos 2t$ or $\frac{dy}{dt} = -4\sin 2t$ (or both)	B1	
	Use $\frac{dy}{dx} = \frac{dy}{dt} \div \frac{dx}{dt}$	M1	
	Obtain or imply $\frac{-4\sin 2t}{3 + 2\cos 2t}$	A1	
	Substitute $\frac{1}{6}\pi$ to obtain $-\frac{1}{2}\sqrt{3}$ or exact equivalent	A1	[4]

Q13.

5	(i)	Differentiate $\ln(x-3)$ to obtain $\frac{1}{x-3}$	B1	
		Attempt to use product rule	M1	
		Obtain $\ln(x-3) + \frac{x}{x-3}$ or equivalent	A 1	
		Substitute 4 to obtain 4	A1	[4]
	(ii)	Use correct quotient or product rule $(x+1)-(x-1)$	M1	
		Obtain correct derivative in any form, e.g. $\frac{(x+1)-(x-1)}{(x+1)^2}$	A1	
		Substitute 4 to obtain $\frac{2}{25}$	A1	[3]

Q14.

5	Obtain $4y \frac{dy}{dx}$ as derivative of $2y^2$	B1	
	Differentiate LHS term by term to obtain expression including at least one $\frac{dy}{dx}$	M1	
	Obtain $2x + 4y \frac{dy}{dx} + 5 + 6 \frac{dy}{dx}$	A1	
	Substitute 2 and -1 to attempt value of $\frac{dy}{dx}$	M1	
	Obtain $-\frac{9}{2}$	A1	
	Obtain equation $9x + 2y - 16 = 0$ or equivalent of required form	A1	[6]

Q15.

6	(i)	Attempt differentiation using product rule	M1	
		Obtain $8x \ln x + 4x$ (a.c.f.)	A1	
		Equate first derivative to zero and attempt solution	M1	
		Obtain 0.607	A1	
		Obtain –0.736 following their x-coordinate	A1√	[5]

(ii) Use an appropriate method for determining nature of stationary point M1 Conclude point is a minimum (with no errors seen, second derivative = 8) A1 [2]

Q16.

5 (i) State
$$\frac{dx}{dt} = \frac{1}{t+1}$$

State $\frac{dy}{dt} = 2e^{2t} + 2$

B1

Attempt expression for $\frac{dy}{dx}$

Obtain $\frac{dy}{dx} = (2e^{2t} + 2)(t+1)$ or equivalent

A1 [4]

(ii) Substitute $t = 0$ and attempt gradient of normal

Obtain $-\frac{1}{4}$ following their expression for $\frac{dy}{dx}$

Attempt to find equation of normal through point $(0, 1)$

Obtain $x + 4y - 4 = 0$

A1 [4]

Q17.

5	(i)	Use product rule to differentiate y	M1	
		Obtain correct derivative in any form	A1	
		Use $\frac{dy}{dx} = \frac{dy}{dt} \div \frac{dx}{dt}$	M1	
		Obtain given answer correctly	A1	[4]
	(ii)	Substitute $t = 0$ in $\frac{dy}{dx}$ and both parametric equations	B1	
		Obtain $\frac{dy}{dx} = 2$ and coordinates (1, 0)	B 1	
		Form equation of the normal at their point, using negative reciprocal of their $\frac{dy}{dx}$	M1	
		State correct equation of normal $y = -\frac{1}{x} + \frac{1}{x}$ or equivalent	A1	[4]

Q18.

5	(i)	State $3 \frac{dy}{dx}$ as derivative of 3y, or equivalent	B1	
		State $4xy + 2x^2 \frac{dy}{dx}$ as a derivative of $2x^2y$, or equivalent	B 1	
		Equate derivative of LHS to zero and solve for $\frac{dy}{dx}$	M1	
		Obtain given answer correctly	A 1	[4]
	(ii)	Substitute $x = 2$ into given equation and solve for y	M1	
		Obtain gradient = $\frac{12}{5}$ correctly	A1	
		Form equation of the normal at their point, using negative recip of their $\frac{dy}{dx}$	M1	
		State correct equation of normal $5x + 12y + 2 = 0$ or equivalent	A1	[4]

Q19.

7	(i)	State $6y \frac{dy}{dx}$ as the derivative of $3y^2$	B1	
		State $\pm 2x \frac{dy}{dx} \pm 2y$ as the derivative of $-2xy$ (allow any combination of signs here)	B1 +	
		Equate attempted derivative of LHS to 0 (or 10) and solve for $\frac{dy}{dx}$	MI	
		Obtain the given answer correctly	A1	4
		[The M1 is dependent on at least one of the B marks being earned.]		
	(ii)	[The M1 is dependent on at least one of the B marks being earned.] State or imply the points lie on $y-2x=0$ or $(y-2x)/(3y-x)=0$	B1	0
	. ,	Carry out complete method for finding one coordinate of a point of intersection of $y = kx$ with the		
		given curve	MI	
			WII	
		Obtain $10x^2 = 10$ or $2\frac{1}{2}y^2 = 10$ or 2-term equivalent	AI	
		Obtain one correct point e.g. $(1,2)$ or 2 values of $ox(oxy)$ Obtain a second correct point e.g. $(-1,-2)$		^
		Obtain one correct point e.g. (1,2)	Al _	0
		Obtain a second correct point e.g. (-1, -2)	Al	50
			/ V	

Q20.

6 (i)	State <i>A</i> is (4, 0) State <i>B</i> is (0, 4)	B1 B1
		[2]
(ii)	Use the product rule to obtain the first derivative Obtain derivative $(4 - x)e^x - e^x$, or equivalent Equate derivative to zero and solve for x Obtain answer $x = 3$ only	M1(dep) A1 M1 (dep) A1
		[4]
(iii)	Attempt to form an equation in p e.g. by equating gradients of OP and the tangent at P , or by substituting $(0, 0)$ in the equation of the tangent at P	M1
	Obtain equation in any correct form e.g. $\frac{4-p}{p} = 3-p$	A1
	Obtain 3-term quadratic $p^2 - 4p + 4 = 0$, or equivalent Attempt to solve a quadratic equation in p Obtain answer $p = 2$ only	A1 M1 A1
		[5]
21.		
5 (i)	Lise the product rule to obtain the first derivative (must involve 2 terms)	M1

Q

5 (i)	Use the product rule to obtain the first derivative (must involve 2 terms)	M1	
	Obtain derivative $2x \ln x + x^2 \frac{1}{x}$ or equivalent	A1	
	Equate derivative to zero and solve for x	M1	
	Obtain answer $x = e^{-0.5}$ or $\frac{1}{\sqrt{e}}$ or equivalent (e.g. 0.61)	A1	4
(ii)	Determine nature of stationary point using correct second derivative		

(3 + 2lnx) or correct first derivative or equation of the curve (3 y-values, central one y(exp (-0.5)) M1 Show point is a minimum completely correctly 2 A1

Q22.

4 (i) State
$$3y^2 \frac{dy}{dx}$$
 as derivative of y^3

State $9y + 9x \frac{dy}{dx}$ as derivative of $9xy$

Express $\frac{dy}{dx}$ in terms of x and y

Obtain given answer correctly

(The MI is conditional on at least one B mark being obtained.)

(ii) Obtain gradient at (2, 4) in any correct masimplified form

Form the equation of the tangent at (2, 4)

Obtain answer $5y - 4x = 12$, or equivalent

Q23.

4	State derivative $2 - \sec^2 x$, or equivalent Equate derivative to zero and solve for x	B1 M1	
	Obtain $x = \frac{1}{4}\pi$, or 0.785 (± 45° gains A1)	A1	
	Obtain $x = -\frac{1}{4}\pi$, (allow negative of first solution)	A1√	
	Obtain corresponding y-values $\frac{1}{2}\pi - 1$ and $-\frac{1}{2}\pi + 1$, ± 0.571	A1	[5]

Q24.

6	At any stage, state the correct derivative of $e^{-\frac{1}{2}x}$ or $e^{\frac{1}{2}x}$	B1
	Use product or quotient rule	M1
	Obtain correct first derivative in any form	A1
	Obtain correct second derivative in any form	B1 √
	Equate second derivative to zero and solve for x	M1
	Obtain $x = 4$	A1
	Obtain $y = 4e^{-2}$, or equivalent	A1 [7]

Q25.

6	(i)	Use product rule	M1*	
		Obtain derivative in any correct form	A1	
		Equate derivative to zero and solve for x	M1(dep*)	
		Obtain $x = 1/e$, or exact equivalent	A1	
		Obtain $y = -1/e$, or exact equivalent	A 1	[5]
	(ii)	Carry out complete method for determining the nature of a stationary point	M1	
		Show that at $x = 1/e$ there is a minimum point, with no errors seen	A1	[2]

Q26.

8	(i)	EITHER: Substitute $x = 1$ and attempt to solve 3-term quadratic in y . Obtain answers $(1, 1)$ and $(1, -3)$. OR: State answers $(1, 1)$ and $(1, -3)$.	M1 A1 B1 + B1	[2]
	(ii)	State $2y \frac{dy}{dx}$ as derivative of y^2	B1	
		State $2y + 2x \frac{dy}{dx}$ as derivative of $2xy$	B 1	
		Substitute for x and y, and solve for $\frac{dy}{dx}$	M1	
		Obtain $\frac{dy}{dx} = 0$ when $x = 1$ and $y = 1$	A1	
		Obtain $\frac{dy}{dx} = -2$ when $x = 1$ and $y = -3$	A1√	
		Form the equation of the tangent at $(1, -3)$ Obtain answer $2x + y + 1 = 0$	M1 A1	[7]

Q27.

4 (i) State $\frac{dx}{dt} = e^{-t}$ or $\frac{dy}{dt} = e^{t} - e^{-t}$ B1

Use $\frac{dy}{dx} = \frac{dy}{dt} \div \frac{dx}{dt}$ M1

Obtain given answer correctly A1 [3]

(ii) Substitute $\frac{dy}{dx} = 2$ and use correct method for solving an equation of the form $e^{2t} = a$, where a > 0 M1

Obtain answer $t = \frac{1}{2} \ln 3$, or equivalent A1 [2]

Q28.

4 (i) State $\frac{dx}{dt} = \frac{1}{t-2}$ or $\frac{dy}{dt} = 1 - 9t^{-2}$ B1

Use $\frac{dy}{dx} = \frac{dy}{dt} \div \frac{dx}{dt}$ M1

Obtain given answer correctly A1 [3]

(ii) Equate derivative to zero and solve for t M1

State or imply that t = 3 is admissible c.w.o., and note t = -3, 2 cases A1

Obtain coordinates (1, 6) and no others A1 [3]

Q29.

(i) State $2y \frac{dy}{dx}$ as derivative of y^2 , or equivalent 8 B1State $2y + 2x \frac{dy}{dx}$ as derivative of 2xy, or equivalent B₁ Substitute x = -2 and y = 2 and evaluate $\frac{dy}{dx}$ M1Obtain zero correctly and make correct conclusion A1 [4] (ii) Substitute x = -2 into given equation and solve M1 Obtain y = -6 correctly A₁ Obtain $\frac{dy}{dx} = 2$ correctly B1 Form the equation of the tangent at (-2, -6)M1Obtain answer y = 2x - 2Al [5]

Q30.

3	Obtain derivative of the form $k \sec^2 2x$, where $k = 1$ or $k = \frac{1}{2}$	M1
	Obtain correct derivative $\sec^2 2x$ Use correct method for solving $\sec^2 2x = 4$	A1 M1
	Obtain answer $r = \frac{1}{\pi} (\text{or } 0.524 \text{ radians})$	Δ1

Obtain answer
$$x = \frac{1}{6}\pi$$
 (or 0.524 radians)

A1

Obtain answer $x = \frac{1}{3}\pi$ (or 1.05 radians) and no others in range

A1 [5]

Q31.

- 7 (i) Use product rule to differentiate y M1
 Obtain correct derivative in any form in t for y A1 $Use \frac{dy}{dx} = \frac{dy}{dt} \div \frac{dx}{dt}$ M1
 Obtain given answer correctly A1 [4]
 - (ii) State t = 0 M1 State that $\frac{dy}{dx} = 0$ and make correct conclusion A1 [2]
 - (iii) Substitute t = -2 into equation for x or y M1 Obtain $(e^{-6}, 4e^{-2} + 3)$ A1 [2]

Q32.

- 6 (i) State $\frac{dx}{dt} = 4\sin\theta\cos\theta$ or equivalent (nothing for $\frac{dy}{dx} = 4\sec^2\theta$)

 B1

 Use $\frac{dy}{dx} = \frac{dy}{d\theta} \div \frac{dx}{d\theta}$ Obtain given answer correctly

 A1 [3]
 - Obtain given answer correctly

 A1 [3]

 (ii) Substitute $\theta = \frac{\pi}{4}$ in $\frac{dy}{dx}$ and both parametric equations

 M1

 Obtain $\frac{dy}{dx} = 4$ and coordinates (2, 4)

 Form equation of tangent at their point

 State equation of tangent in correct form y = 4x 4M1

 [4]

Q33.

1 Obtain derivative of the form $\frac{k}{5x+1}$, where k=1, 5 or $\frac{1}{5}$ Obtain correct derivative $\frac{5}{5x+1}$ A1

Substitute x=4 into expression for derivative and obtain $\frac{5}{21}$ A1 $\sqrt{3}$

Q34.

8	(i)	State $2y \frac{dy}{dx}$ as derivative of y^2 , or equivalent	B1	
		Equate derivative of LHS to zero and solve for $\frac{dy}{dx}$	M1	
		Obtain given answer correctly	A1	[3]
	(ii)	Equate gradient expression to -1 and rearrange Obtain $y = 2x$ Substitute into original equation to obtain an equation in x^2 (or y^2) Obtain $2x^2 - 3x - 2 = 0$ (or $y^2 - 3y - 4 = 0$) Correct method to solve their quadratic equation State answers $(-\frac{1}{2}, -1)$ and $(2, 4)$	M1 A1 M1 A1 M1	[6]

Q35.

4	(i)	State $\frac{dx}{dt} = \frac{-2}{1-2t}$ or $\frac{dy}{dt} = -2t^{-2}$	B1	
		Use $\frac{dy}{dx} = \frac{dy}{dt} \div \frac{dx}{dt}$ Obtain given answer correctly	M1 A1	[3]
	(ii)	Equate derivative to 3 and solve for t State or imply that $t = -1$ c.w.o. Obtain coordinates ($\ln 3, -2$)	M1 A1 A1	[3]

Q36.

2	Use quotient rule or product rule, correctly Obtain correct derivative in any form Equate derivative to zero and solve for x		
	Obtain $x = \frac{\pi}{8}$	A1	[4]

Q37.

7	(i)	State $4y \frac{dy}{dx}$ as derivative of $2y^2$, or equivalent	B1	
		State $4y + 4x \frac{dy}{dx}$ as derivative of $4xy$, or equivalent	B1	
		Equate derivative of LHS to zero and solve for $\frac{dy}{dx}$	M1	
		Obtain given answer correctly	A1	[4]
	(ii)	State or imply that the coordinates satisfy $3x - 2y = 0$ Obtain an equation in x^2 (or y^2)	B1	
		Solve and obtain $x^2 = 4$ (or $y^2 = 9$)	M1	
			A1	
		State answer (2, 3)	A1	
		State answer $(-2, -3)$	A1	[5]

Q38.

3	Obtain derivative $e^{2x} - 5e^x + 4$	B1	
	Equate derivative to zero and carry out recognisable solution method for a quadratic in e ^x	M1	
	Obtain $e^x = 1$ or $e^x = 4$	A1	
	Obtain $x = 0$ and $x = \ln 4$	A1	
	Use an appropriate method for determining nature of at least one stationary point	M ₁	
	$\left(\frac{d^2 y}{dx^2} = 2e^{2x} - 5e^x, \text{ when } x = 0, \frac{d^2 y}{dx^2} = -(3), x = \ln 4, \frac{d^2 y}{dx^2} = +(12)\right)$		
	Conclude maximum at $x = 0$ and minimum at $x = \ln 4$ (no errors seen)	A1	[6]

Q39.

5	(i)	State $\frac{dx}{d\theta} = -2\sin 2\theta + \sin \theta$ or $\frac{dy}{d\theta} = 8\sin \theta \cos \theta$	B1	
		Use $\frac{dy}{dx} = \frac{dy}{d\theta} \div \frac{dx}{d\theta}$	M1	
		Use $\sin 2\theta = 2\sin\theta\cos\theta$	M1	
		Obtain given answer correctly	A1	[4]
	(ii)	Equate derivative to -4 and solve for $\cos \theta$	M1	
		Obtain $\cos \theta = \frac{1}{2}$	A1	
		Obtain $x = -1$	A1	
		Obtain $y = 3$	A1	[4]

Q40.

2	Use quotient or product rule	M1	
	Obtain correct derivative in any form	A1	
	Equate (numerator) of derivative to zero and solve for x	DM1	
	Obtain $x = \frac{1}{3}$	A1	
	Obtain $y = \frac{3}{2}$	A1	[5]

Q41.

5	(i)	State $\frac{dx}{dt} = \frac{1}{2}t^{-\frac{1}{2}}$ or $\frac{dy}{dt} = \frac{3}{t}$	B1	
		Use $\frac{dy}{dx} = \frac{dy}{dt} \div \frac{dx}{dt}$	M1	
		Use $y = 6$ to find t	M1	
		Obtain $t = e^2$	A1	
		Obtaind $\frac{dy}{dx} = \frac{6}{e}$	A 1	[5]
	(ii)	Obtain x and form equation of the tangent at their point	M1	
		Obtain correct equation for tangent $\left(y-6=\frac{6}{e}(x-(1+e))\right)$	A1	
		Show that tangent passes through (1, 0) by substitution	A1	[3]

Q42.

2	(i)	Differentiate to obtain form $k_1 \cos x + k_2 \sec^2 2x$	M1	
		Obtain correct second term $2\sec^2 2x$	A1	
		Obtain $3\cos x + 2\sec^2 2x$ and hence answer 5	A1	[3]
	(ii)	Differentiate to obtain form $ke^{2x}(1+e^{2x})^{-2}$	M1	
		Obtain correct $-12e^{2x}(1+e^{2x})^{-2}$ or equivalent (may be implied)	A1	
		Obtain –3	A1	[3]

Q43.

7	(i)	Obtain $3y + 3x \frac{dy}{dx}$ as derivative of $3xy$	B1	
		Obtain $2y \frac{dy}{dx}$ as derivative of y^2	B1	
		State $4x + 3y + 3x \frac{dy}{dx} + 2y \frac{dy}{dx} = 0$	B1	
		Substitute 2 and -1 to find gradient of curve (dependent on at least one B1) Form equation of tangent through $(2,-1)$ with numerical gradient	M1	
		(dependent on previous M1)	DM1	
		Obtain $5x + 4y - 6 = 0$ or equivalent of required form	A1	[6]
	(ii)	Use $\frac{dy}{dx} = 0$ to find relation between x and y		
		(dependent on at least one B1 from part(i))	M1	
		Obtain $4x + 3y = 0$ or equivalent	A1	
		Substitute for x or y in equation of curve	M1	
		Obtain $-\frac{1}{2}v^2 = 3$ or $-\frac{2}{2}x^2 = 3$ or equivalent and conclude appropriately	A1	[4]

Q44.

4 Obtain
$$\frac{dx}{dt} = \frac{2}{t+1}$$

Obtain
$$\frac{dy}{dt} = 4e^t$$
 B1

Use
$$\frac{dy}{dx} = \frac{dy}{dt} / \frac{dx}{dt}$$
 with $t = 0$ to find gradient M1

Obtain 2 A1

Form equation of tangent through (0, 4) with numerical gradient obtained from attempt to differentiate

Obtain 2x - y + 4 = 0 or equivalent of required form A1 [6]

Q45.

8 (i) Differentiate using product rule M1
Obtain
$$\sec^2 x \cos 2x - 2\tan x \sin 2x$$
 A1
Use $\cos 2x = 2\cos^2 x - 1$ or $\sin 2x = 2\sin x \cos x$ or both
Express derivative in terms of $\sec x$ and $\cos x$ only
Obtain $4\cos^2 x - \sec^2 x - 2$ with no errors $\sec x = (AG)$ A1 [5]

(ii) State
$$4\cos^4 x - 2\cos^2 x - 1 = 0$$

Apply quadratic formula to a 3 term quadratic equation in terms of $\cos^2 x$ to find the least positive value of $\cos^2 x$ M1

Obtain or imply
$$\cos^2 x = \frac{1+\sqrt{5}}{4}$$
 or 0.809...

Q46.

4 (i) Differentiate to obtain form
$$k_1 \sin 2x + k_2 \cos x$$
 M1
Obtain correct $-6 \sin 2x - 5 \cos x$ A1

Substitute
$$\frac{1}{6}\pi$$
 to obtain $-\frac{11}{2}\sqrt{3}$ or exact equivalent A1 [3]

(ii) Obtain
$$6y + 6x \frac{dy}{dx}$$
 as derivative of $6xy$

Obtain
$$3y^2 \frac{dy}{dx}$$
 as derivative of y^3

Obtain
$$3x^2 + 6y + 6x \frac{dy}{dx} + 3y^2 \frac{dy}{dx} = 0$$
 or equivalent

Obtain gradient
$$-\frac{15}{18}$$
 or $-\frac{5}{6}$ A1 [5]

Q47.

3	Obtain $6y + 6x \frac{dy}{dx}$ as derivative of $6xy$	B1	
	Obtain $2y \frac{dy}{dx}$ as derivative of y^2	B 1	
	Obtain $\frac{3}{x}$ and $\frac{d}{dx}(16) = 0$	B1	
	Substitute 1 and 2 to find value of $\frac{dy}{dx}$	M1	
	Obtain value $\frac{2}{3}$ as gradient of normal following their value of $\frac{dy}{dx}$	A1√	
	Form equation of normal through (1, 2) with numerical gradient	M1	
	Obtain $2x-3y+4=0$	A1	[7]

P3 (variant1 and 3)

Q1.

9	(i)	Use quotient or product rule to differentiate $(1-x)/(1+x)$	M1	
		Obtain correct derivative in any form	A1	
		Use chain rule to find $\frac{dy}{dx}$	M1	
		Obtain a correct expression in any form	A1	
		Obtain the gradient of the normal in the given form correctly	A1	[5]
	(ii)	Use product rule	M1	
		Obtain correct derivative in any form	A1	
		Equate derivative to zero and solve for x	M1	
		Obtain $x = \frac{1}{2}$	A1	[4]

Q2.

2	(i)	Obtain $\frac{k \cos 2x}{1 + \sin 2x}$ for any non-zero constant k	M1	
		Obtain $\frac{2\cos 2x}{1+\sin 2x}$	A1	[2]
	(ii)	Use correct quotient or product rule	M1	
		Obtain $\frac{x \sec^2 x - \tan x}{x^2}$ or equivalent	A1	[2]

Q3.

- (i) Use at least one of $e^{2x} = 9$, $e^y = 2$ and $e^{2y} = 4$ **B**1 Obtain given result 58 + 2k = c**B**1 [2]
 - (ii) Differentiate left-hand side term by term, reaching $ae^{2x} + be^{y} \frac{dy}{dx} + ce^{2y} \frac{dy}{dx}$ M1
 - Obtain $12e^{2x} + ke^y \frac{dy}{dx} + 2e^{2y} \frac{dy}{dx}$ A1

Substitute (ln 3, ln 2) in an attempt involving implicit differentiation at least once, where

M1 Obtain 108 - 12k - 48 = 0 or equivalent A1 Obtain k = 5 and c = 68A1

[5]

Q4.

Use correct quotient or product rule M1Obtain correct derivative in any form, e.g. $-\frac{3 \ln x}{x^4} + \frac{1}{x^4}$ A1 Equate derivative to zero and solve for x an equation of the form $\ln x = a$, where a > 0M1 Obtain answer $\exp(\frac{1}{3})$, or 1.40, from correct work [4] A1

Q5.

- 6 (i) Obtain $2y \frac{dy}{dx}$ as derivative of y^2 B₁
 - Obtain $-4y 4x \frac{dy}{dx}$ as derivative of -4xyB₁

Substitute x = 2 and y = -3 and find value of $\frac{dy}{dx}$

- (dependent on at least one B1 being earned and $\frac{d(45)}{dx} = 0$) M1
- Obtain $\frac{12}{7}$ or equivalent A1 [4]
- (ii) Substitute $\frac{dy}{dx} = 1$ in an expression involving $\frac{dy}{dx}$, x and y and obtain ay = bxM1 Obtain y = x or equivalent A1 Uses y = x in original equation and demonstrate contradiction [3] A1

Q6.

3 Obtain
$$\frac{dx}{d\theta} = 2\cos 2\theta - 1$$
 or $\frac{dy}{d\theta} = -2\sin 2\theta + 2\cos \theta$, or equivalent B1

Use
$$\frac{dy}{dx} = \frac{dy}{d\theta} \div \frac{dx}{d\theta}$$
 M1

Obtain $\frac{dy}{dx} = \frac{-2\sin 2\theta + 2\cos \theta}{2\cos 2\theta - 1}$, or equivalent

At any stage use correct double angle formulae throughout M1

Obtain
$$\frac{dy}{dx} = \frac{-2\sin 2\theta + 2\cos \theta}{2\cos 2\theta - 1}$$
, or equivalent

At any stage use correct double angle formulae throughout M1Obtain the given answer following full and correct working [5] A1

Q7.

- Use correct quotient or product rule M1 Obtain correct derivative in any form, e.g. $\frac{2e^{2x}}{r^3} - \frac{3e^{2x}}{r^4}$ A1 Equate derivative to zero and solve a 2-term equation for non-zero x M1Obtain $x = \frac{3}{2}$ correctly A1 [4]
 - (ii) Carry out a method for determining the nature of a stationary point, e.g. test derivative M1Show point is a minimum with no errors seen A1 [2]

Q8.

5 (i) Use correct quotient rule or equivalent M1
Obtain
$$\frac{(1+e^{2x})2x-(1+x^2)2e^{2x}}{(1+e^{2x})^2}$$
 or equivalent A1

Substitute
$$x = 0$$
 and obtain $-\frac{1}{2}$ or equivalent A1 [3]

(ii) Differentiate
$$y^3$$
 and obtain $3y^2 \frac{dy}{dx}$

Differentiate
$$5xy$$
 and obtain $5y + 5x \frac{dy}{dx}$

Obtain
$$6x^2 + 5y + 5x \frac{dy}{dx} + 3y^2 \frac{dy}{dx} = 0$$
 B1

© Cambridge International Examinations 2013

Page 5	Mark Scheme	Syllabus	Paper
12851	GCE AS/A LEVEL – May/June 2013	9709	31

Substitute
$$x = 0$$
, $y = 2$ to obtain $-\frac{5}{6}$ or equivalent following correct work B1 [4]

Q9.

4	Use product or quotient rule	M1	
	Obtain derivative in any correct form	A1	
	Equate derivative to zero and obtain an equation of the form $a \sin 2x = b$, or a quadratic in $\tan x$		
	$\sin^2 x$, or $\cos^2 x$	M1*	
	Carry out correct method for finding one angle	M1(de	ep*)
	Obtain answer, e.g. 0.365	A1	• /
	Obtain second answer 1.206 and no others in the range (allow 1.21)	A1	[6]
	[Ignore answers outside the given range.]		
	[Treat answers in degrees, 20.9° and 69.1°, as a misread.]		

Q10.

2	Use of correct quotient or product rule to differentiate x or t		M1	
	Obtain correct $\frac{3}{(2t+3)^2}$ or unsimplified equivalent		A1	
	Obtain $-2e^{-2t}$ for derivative of y		B1	
	Use $\frac{dy}{dx} = \frac{\frac{dy}{dt}}{\frac{dx}{dt}}$ or equivalent		M1	
	Obtain –6	cwo	A1	[5]
	Alternative: Eliminate parameter and attempt differentiation $y = e^{\frac{-6x}{1-2x}}$		B1	
	Use correct quotient or product rule		M1	
	Use chain rule		M1	
	Obtain $\frac{dy}{dx} = \frac{-6}{(1-2x)^2} e^{\frac{-6x}{1-2x}}$		A1	
	Obtain –6	cwo	A1	

Q11.

2	EITHER:	Use chain rule	M1	
		obtain $\frac{dx}{dt} = 6 \sin t \cos t$, or equivalent	A1	
		obtain $\frac{dy}{dt} = -6\cos^2 t \sin t$, or equivalent	A1	
		Use $\frac{dy}{dx} = \frac{dy}{dt} \div \frac{dx}{dt}$	M1	
		Obtain final answer $\frac{dy}{dx} = -\cos t$	A1	
	OR:	Express y in terms of x and use chain rule	M1	
		Obtain $\frac{dy}{dx} = k(2 - \frac{x}{3})^{\frac{1}{2}}$, or equivalent	A1	
		Obtain $\frac{dy}{dx} = -(2 - \frac{x}{3})^{\frac{1}{2}}$, or equivalent	A1	
		Express derivative in terms of t	M1	
		Obtain final answer $\frac{dy}{dx} = -\cos t$	A1	[5]

Q12.

2	Use correct quotient or product rule or equivalent	M1	
	Obtain $\frac{(1+e^{2x}).2e^{2x}-e^{2x}.2e^{2x}}{(1+e^{2x})^2}$ or equivalent	A1	
	Substitute $x = \ln 3$ into attempt at first derivative and show use of relevant logarithm property at least once in a correct context	M1	
	Confirm given answer $\frac{9}{50}$ legitimately	A1	[4]

Q13.

8	(i)	Differentiate y to obtain $3\sin^2 t \cos t - 3\cos^2 t \sin t$ o.e.	B1	
		Use $\frac{dy}{dx} = \frac{dy}{dt} / \frac{dt}{dx}$	M1	
		Obtain given result $-3\sin t \cos t$	Alcwo	[3]
	(ii)	Identify parameter at origin as $t = \frac{3}{4}\pi$	B1	
		Use $t = \frac{3}{4}\pi$ to obtain $\frac{3}{2}$	B1	[2]
	(iii)	Rewrite equation as equation in one trig variable e.g. $sin2t = -\frac{2}{3}$, $9 sin^4 x - 9 sin^2 x + 1 = 0$, $tan^2 x + 3 tan x + 1 = 0$	B1	
		Find at least one value of t from equation of form $\sin 2t = k$ o.e.	M1	
		Obtain 1.9	A1	
		Obtain 2.8 and no others	A1	[4]

Q14.

7	(i)	EITHER:	State or imply $\frac{-}{x} + \frac{-}{y} \frac{-x}{dx}$ as derivative of $\ln xy$, or equivalent	B 1	
			State or imply $3y^2 \frac{dy}{dx}$ as derivative of y^3 , or equivalent	B 1	
			Equate derivative of LHS to zero and solve for dx	M1	
			Obtain the given answer	A1	
		OR	Obtain $xy = \exp((1+y^3))$ and state or imply $y + x \frac{dy}{dx}$ as derivative of xy	B1	
			State or imply $3y^2 \frac{dy}{dx} \exp(1+y^3)$ as derivative of $(1+y^3)$	B1	
			Equate derivatives and solve for $\frac{-v}{dx}$	M1	
			Obtain the given answer	A1	[4]
			[The M1 is dependent on at least one of the B marks being earned]		
	(ii)	Equate de	nominator to zero and solve for y	M1*	
	, ,		= 0.693 only	A1	
		Substitute	found value in the equation and solve for x	M1(c	dep*)
			= 5.47 only	A1	[4]

Q15.

3 (i) Either Use correct quotient rule or equivalent to obtain

	$\frac{\mathrm{d}x}{\mathrm{d}t} = \frac{4(2t+3)-8t}{(2t+3)^2}$ or equivalent	B1	
	Obtain $\frac{dy}{dt} = \frac{4}{2t+3}$ or equivalent	B1	
	Use $\frac{dy}{dx} = \frac{\frac{dy}{dt}}{\frac{dx}{dt}}$ or equivalent	M1	
	Obtain $\frac{1}{3}(2t+3)$ or similarly simplified equivalent	Al	
<u>Or</u>	Express t in terms of x or y e.g. $t = \frac{3x}{4-2x}$	B1	
	Obtain Cartesian equation e.g. $y = 2 \ln \left(\frac{6}{2 - x} \right)$	B1	
	Differentiate and obtain $\frac{dy}{dx} = \frac{2}{2-x}$	M1	
	Obtain $\frac{1}{3}(2t+3)$ or similarly simplified equivalent	Al	[4]
Obt	ain $2t = 3$ or $t = \frac{3}{2}$	B1	
Sub	stitute in expression for $\frac{dy}{dx}$ and obtain 2	B1	[2]

Q16.

(ii)

1	Use correct quotient or product rule	M1	
	Obtain correct derivative in any form	A1	
	Justify the given statement	A1	[3]

Q17.

4	Use correct product or quotient rule at least once	M1*	
	Obtain $\frac{dx}{dt} = e^{-t} \sin t - e^{-t} \cos t$ or $\frac{dy}{dt} = e^{-t} \cos t - e^{-t} \sin t$, or equivalent	t Al	
	Use $\frac{dy}{dx} = \frac{dy}{dt} \div \frac{dx}{dt}$	MI	
	Obtain $\frac{dy}{dx} = \frac{\sin t - \cos t}{\sin t + \cos t}$, or equivalent	Al	
	EITHER: Express $\frac{dy}{dx}$ in terms of tan t only	MI(dep*)	
	Show expression is identical to $\tan\left(t - \frac{1}{4}\pi\right)$	Al	
	OR: Express $\tan\left(t - \frac{1}{4}\pi\right)$ in terms of $\tan t$	MI	
	Show expression is identical to $\frac{dy}{dx}$	Al	[6]

Q18.

4 Differentiate
$$y^3$$
 to obtain $3y^2 \frac{dy}{dx}$

Use correct product rule at least once

*M1

Obtain $6e^{2x}y + 3e^{2x} \frac{dy}{dx} + e^x y^3 + 3e^x y^2 \frac{dy}{dx}$ as derivative of LHS

A1

Equate derivative of LHS to zero, substitute $x = 0$ and $y = 2$ and find value of $\frac{dy}{dx}$

M1(d*M)

Obtain $-\frac{4}{3}$ or equivalent as final answer

A1 [5]

Q19.

3 Obtain
$$\frac{2}{2t+3}$$
 for derivative of x

Use quotient of product rule, or equivalent, for derivative of y

M1

Obtain $\frac{5}{(2t+3)^2}$ or unsimplified equivalent

Obtain $t = -1$

B1

Use $\frac{dy}{dx} = \frac{dy}{dt} / \frac{dx}{dt}$ in algebraic or numerical form

M1

Obtain gradient $\frac{5}{2}$

A1 [6]

Q20.

10	(i)	Use of product or quotient rule	M1	
		Obtain $-5e^{-\frac{1}{2}x}\sin 4x + 40e^{-\frac{1}{2}x}\cos 4x$	A1	
		Equate $\frac{dy}{dx}$ to zero and obtain $\tan 4z = k$ or R $\cos(4x \pm \alpha)$	M1	
		Obtain $\tan 4x = 8$ or $\sqrt{65} \cos \left(4x \pm \tan^{-1} \frac{1}{8}\right)$	A1	
		Obtain 0.362 or 20.7°	A1	
		Obtain 1.147 or 65.7°	A1	[6]
	(ii)	State or imply that x-coordinates of T_n are increasing by $\frac{1}{4}\pi$ or 45°	Bl	
		Attempt solution of inequality (or equation) of form $x_1 + (n-1)k\pi$. 25	Ml	
		Obtain $n > \frac{4}{\pi}(25 - 0.362) + 1$, following through on their value of x_1	A1 [∧]	
		n = 33	Al	[4]

Q21.

6	Obtain correct derivative of RHS in any form	B1	
	Obtain correct derivative of LHS in any form	B1	
	Set $\frac{dy}{dx}$ equal to zero and obtain a horizontal equation	M1	
	Obtain a correct equation, e.g. $x^2 + y^2 = 1$, from correct work	A1	
	By substitution in the curve equation, or otherwise, obtain an equation in x^2 or y^2	M1	
	Obtain $x = \frac{1}{2}\sqrt{3}$	A1	
	Obtain $y = \frac{1}{2}$	A1	7

Q22.

4	(i)	Use chain rule correctly at least once	M1	
		Obtain either $\frac{dx}{dt} = \frac{3\sin t}{\cos^4 t}$ or $\frac{dy}{dt} = 3\tan^2 t \sec^2 t$, or equivalent	A1	
		Use $\frac{dy}{dx} = \frac{dy}{dt} \div \frac{dx}{dt}$	M1	
		Obtain the given answer	A1	[4]
	(ii)	State a correct equation for the tangent in any form Use Pythagoras	B1 M1	
		Obtain the given answer	A1	[3]

Q23.

2	Use correct product rule or correct chain rule to differentiate y	M1	
	$Use \frac{dy}{dx} = \frac{\frac{dy}{d\theta}}{\frac{dx}{d\theta}}$	M*1	
	Obtain $\frac{-4\cos\theta\sin^2\theta + 2\cos^3\theta}{\sec^2\theta}$ or equivalent	A1	
	Express $\frac{dy}{dx}$ in terms of $\cos \theta$	DM*1	
	Confirm given answer $6\cos^5\theta - 4\cos^3\theta$ legitimately	A1	[5]