Q1.

6 (i)	Attempt to apply the chain or quotient rule	M1
	Obtain derivative of the form $\frac{k \sec^2 x}{(1 + \tan x)^2}$ or equivalent	A1
	Obtain correct derivative $-\frac{\sec^2 x}{(1 + \tan x)^2}$ or equivalent	A1
	Explain why derivative, and hence gradient of the curve, is	
	always negative	A1
		[4]
(ii)	State or imply correct ordinates: 1, 0.7071, 0.5	B1
	Use correct formula, or equivalent, with $h = \frac{1}{8\pi}$ and three ordinates	M1
	Obtain answer 0.57 (0.57220) \pm 0.01 (accept 0.18 π)	A1
		[3]

© University of Cambridge Local Examinations Syndicate 2003

	Pag	ge 3	Mark Scheme	Syllabus	Paper	
			A AND AS LEVEL – JUNE 2003	9709	2	
	(iii)		Justify the statement that the rule gives an over-est	imate		B1
Q2	•					
5	(i)	Obtain Equate	erivative of the form $(e^{-x} \pm xe^{-x})$. Allow $xe^x \pm e^x$ {via quotient recorrect derivative of $e^{\pm x} - xe^{-x}$ derivative to zero and solve for x answer $x = 1$	rule}	M1 A1 M1 A1	4
	(ii)	Use co	or imply correct ordinates 0, 0.367879, 0.27067 rrect formula, or equivalent, with h = 1 and three ordinates answer 0.50 with no errors seen		B1 M1 A1	3
	(iii)	Justify	statement that the rule gives an under-estimate		B1	1

Q3.

6	(i)	State coordinates (1, 0)	B1	1
	(ii)	Use quotient or product rule	M1	
		Obtain correct derivative, e.g. $\frac{-\ln x}{x^2} + \frac{1}{x^2}$	A1	
		Equate derivative to zero and solve for <i>x</i> Obtain <i>x</i> = e	M1 A1	
			AI	
		Obtain $y = \frac{1}{e}$	A1	5
	(iii)	Show or imply correct coordinates 0, 0.34657, 0.36620, 0.34657,	B1	
	()	Use correct formula, or equivalent, with $h = 1$ and four ordinates	A1	
		Obtain answer 0.89 with no errors seen	A1	3
	(iv)	Justify statement that the rule gives an under-estimate	B1	1

Q4.

7	(6)	Obtain derivative of the form $\frac{k}{2x+3}$, where $k=2$ or $k=1$	MI	
		Obtain correct derivative $\frac{2}{2x+3}$	AI	2
	(ii)		MIT	
		Use limits correctly.	M1(de	p*)
		Obtain given answer	All	3
	diliy	Carry out division method reaching a linear quotient and constant remainder	Mi	
	-	Obtain quotient $2x + 1$	AI	
		Obtain remainder -3	Al	3
	(iv)	Attempt integration of an integrand of the form $ax + b + \frac{c}{2x+3}$	MI	
		Obtain indefinite integral $\kappa^2 + \kappa - \frac{3}{2} \ln(2\kappa + 3)$	AI	
		Substitute limits and obtain given answer [The f.t. mark is also available if the indefinite integral of the third term is omitted but its definite integral is stitled to be $c \ln 3$.]	AL	3

Q5.

7	(i)	State coordinates $(0, 1)$ for A	B1	[1]
	(ii)	Differentiate using the product rule Obtain derivative in any correct form Equate derivative to zero and solve for x	M1* A1 M1*	
		Obtain $x = \frac{1}{4}\pi$ or 0.785 (allow 45°)	A1	[4]
	(ii)	Show or imply correct ordinates 1, 1.4619, 1.4248, 0 Use correct formula or equivalent with $h = \frac{1}{2}\pi$ and four ordinates	B1 M1	
		Obtain correct answer 1.77 with no errors seen	A1	[3]
	(iv)	Justify statement that the trapezium rule gives and underestimate	B1	[1]

Q6.

(a)	State derivative is $k/(3x-2)$ where $k=3.1$ or $\frac{1}{2}$	M1	
(4)	State correct derivative $3/(3x-2)$ Form the equation of the tangent at the point where $x = 1$ Obtain answer $y = 3x - 3$, or equivalent	A1 M1 A1	[4]
(b)	(i) Carry out a complete method for finding A Obtain $A = 4$	M1 A1	[2]
	(ii) Integrate and obtain term $2x$ Obtain second term of the form $a \ln(3x-2)$ Obtain second term $\frac{4}{3} \ln(3x-2)$	B1 M1 A1√	
	Substitute limits correctly Obtain given answer following full and correct working	M1 A1	[5]
(i)	Use quotient rule Obtain correct derivative in any form Obtain given result correctly	M1 A1 A1	[3]
(ii)	State $\cot^2 x = -1 + \cos ec^2 x$, or equivalent Obtain integral $-x - \cot x$ (f.t. on signs in the identity) Substitute correct limits correctly Obtain given answer	B1 B1√ M1 A1	[4]
(iii)	Use trig formulae to convert integrand to $\frac{1}{k \sin^2 x}$ where $k = \pm 2$, or ± 1	M1	
	Obtain given answer $\frac{1}{2} \csc^2 x$ correctly Obtain answer $-\frac{1}{2} \cot x + c$, or equivalent	A1 B1	[3]
(i)	Differentiate to obtain expression of form $ke^{\frac{1}{2}x} + m$ Obtain correct $2e^{\frac{1}{2}x} - 6$ Equate attempt at first derivative to zero and attempt solution Obtain $\frac{1}{2}x = \ln 3$ or equivalent Conclude $x = \ln 9$ or $a = 9$	M1 A1 DM1 A1	[5]
	(i) (ii)	Form the equation of the tangent at the point where $x = 1$ Obtain answer $y = 3x - 3$, or equivalent (i) Carry out a complete method for finding A Obtain $A = 4$ (ii) Integrate and obtain term $2x$ Obtain second term of the form $a\ln(3x - 2)$ Obtain second term $\frac{4}{3}\ln(3x - 2)$ Substitute limits correctly Obtain given answer following full and correct working (i) Use quotient rule Obtain correct derivative in any form Obtain given result correctly (ii) State $\cot^2 x \equiv -1 + \cos \cot^2 x$, or equivalent Obtain integral $-x - \cot x$ (f.t. on signs in the identity) Substitute correct limits correctly Obtain given answer (iii) Use trig formulae to convert integrand to $\frac{1}{k \sin^2 x}$ where $k = \pm 2$, or ± 1 Obtain given answer $\frac{1}{2} \csc^2 x$ correctly Obtain answer $-\frac{1}{2} \cot x + c$, or equivalent (i) Differentiate to obtain expression of form $ke^{\frac{1}{2}x} + m$ Obtain correct $2e^{\frac{1}{2}x} - 6$ Equate attempt at first derivative to zero and attempt solution Obtain $\frac{1}{2}x = \ln 3$ or equivalent	State correct derivative $3/(3x-2)$ Form the equation of the tangent at the point where $x = 1$ Obtain answer $y = 3x-3$, or equivalent (b) (i) Carry out a complete method for finding A Obtain $A = 4$ (ii) Integrate and obtain term $2x$ Obtain second term of the form $a\ln(3x-2)$ Substitute limits correctly Obtain given answer following full and correct working (i) Use quotient rule Obtain given result correctly Obtain integral $-x - \cot x$ (f.t. on signs in the identity) Substitute correct limits correctly Obtain given answer (ii) Use trig formulae to convert integrand to $\frac{1}{k \sin^2 x}$ where $k = \pm 2$, or ± 1 Obtain given answer $\frac{1}{2} \cos e^2 x$ correctly Obtain answer $-\frac{1}{2} \cot x + c$, or equivalent Obtain answer $-\frac{1}{2} \cot x + c$, or equivalent Obtain correct $2e^{\frac{1}{2}x} - 6$ Equate attempt at first derivative to zero and attempt solution Obtain $\frac{1}{2}x = \ln 3$ or equivalent A1

Q9.

M1

A1

A1 [4]

DM1

(ii) Integrate to obtain expression of form $ae^{\frac{1}{2}x} + bx^2 + cx$

Substitute correct limits and attempt simplification

Obtain correct $8e^{\frac{1}{2}x} - 3x^2 + 3x$

Obtain 8e - 14

7	(a)	Obtain one term of form ke^{2x-1} with any non-zero k	MI	
		Obtain correct integral $x + \frac{1}{2}e^{2x-1}$	AI	
		Substitute limits, giving exact values	MI	
		Correct answer $\frac{1}{2}e^3 + 1$	Al	[4]
	(b)	Use product or quotient rule	MI*	
		Obtain correct derivative in any form Equate derivative to zero and solve for x	Al Ml* dep	
		Obtain $\tan 2x = 1$	Al	
		Obtain $x = \frac{\pi}{8}$	Al	[5]

Q10.

7 (i) Attempt to differentiate using the quotient, product or chain rule
Obtain derivative in any correct form
Obtain the given answer correctly
Al

[3]

© University of Cambridge Local Examinations Syndicate 2003

Page 3	Mark Scheme	Syllabus	Paper
1	A AND AS LEVEL – NOVEMBER 2003	9709	2
	· ·		

(ii)	State or imply the indefinite integral is -cotx	BI
	Substitute limits and obtain given answer correctly	B1
		[2]
(iii)	Use $\cot^2 x = \csc^2 x - 1$ and attempt to integrate both terms,	
	or equivalent	MI
	Substitute limits where necessary and obtain a correct unsimplified	
	answer	A1
	Obtain final anguar [3]	A1
	Obtain final answer $\sqrt{3} - \frac{1}{3}\pi$	AI
		[3]
(iv)	Use $\cos 2A$ formula and reduce denominator to $2\sin^2 x$	В1
	Use given result and obtain answer of the form $k\sqrt{3}$	M1
	The state of the s	11.5
	Obtain correct answer $\frac{1}{2}\sqrt{3}$	Al
	-	[3]

Q11.

7 (i)	State coordinates (0, 5)	B1	1
(ii)	State first derivative of the form $k e^x + m e^{-2x}$, where $km \neq 0$ Obtain correct first derivative $2 e^x - 6 e^{-2x}$ Substitute $x = 0$, obtaining gradient of -4 Form equation of line through A with this gradient (NOT the normal) Obtain equation in any correct form e.g. $y - 5 = -4x$ Obtain coordinates (1.25, 0) or equivalent	M1 A1 A1√ M1 A1	6
(iii)	Integrate and obtain $2 e^x - \frac{3}{2}e^{-2x}$, or equivalent Use limits $x = 0$ and $x = 1$ correctly Obtain answer 4.7	B1 + B1 M1 A1	4

Q12.

6	(I) State $\frac{1}{2}e^{2a}$ as integral of e^{2a}		£1	
	Sinte $y = \frac{1}{4}e^{2w} + 2e^{-x} + c$		B)	
	Evaluate c		MI	
	Obtain answer $y = \frac{1}{2}e^{\frac{\pi}{2}z} + 2e^{-z} - 1\frac{1}{2}$		AI	4
	[Condune emission of c for the second B1.] (ii) Equate derivative to zero		MI	
	EITHER: Obtain $e^{3x} = 2$ Use logarithms and obtain a linear equation in x Obtain answer $x = 0.231$ Show that the point is a minimum with no errors seen OR: Use logarithms and obtain a linear equation in x Obtain $2x = \ln 2 - x$	*	AI AI AI MI AI	
	Obtain answer x = 0.231 Show that the point is a grantour with an arrow seen		AI	

Q13.

2	(1)	Differentiate using the chain or product rule	241	
		Obtain given answer correctly	AI	2
	(11)	Use correct method for solving $\sin 2x = 0.5$	MI	
		Obtain answer $x = \frac{1}{12} \pi$ (or 0.262 radians)	A1	
		Obtain answer $x = \frac{5}{12} \pi$ (or 1.31 radians) and no others in range	A)	3
	(iii)	Replace integrand by $\frac{1}{2} - \frac{1}{2}\cos 2x$, or equivalent	Bi	
		Integrate and obtain $\frac{1}{2}x - \frac{1}{4}\sin 2x$, or equivalent	B17+B17	
		Use limits $x = 0$ and $x = \pi$ correctly	MI	
		Obtain final answer 1.57 (or $\frac{1}{2}\pi$)	AL	.5

Q14.

6	(i)	Use quotient or product rule		MI	
		Obtain derivative in any correct form, e.g. $e^{2x} \left(\frac{2}{x} - \frac{1}{x^2} \right)$		AL	
		Equate derivative to zero and solve for x		MI	
		Obtain $x = \frac{1}{3}$		AI	
		Obtain $y = 2 e$ (or 5.44)	(* allow $\sqrt{y} = 2e$ if $x = \frac{1}{x}$	AI*	5
	(11)	Show or imply correct ordinates 7.389, 13.390, 27.299	2	BI	
		Use correct formula, or equivalent, with $h = 0.5$ and three ordinates	'illicitly' obtained)	MI	
		Obtain answer 15.4 with no errors seen		A1	3
	(III)	Justify the statement that the rule gives an over-estimate		BI	1

Q15.

8	(i)	Differentiate using product or quotient rule	M1	
		Obtain derivative in any correct form	A1	
		Equate derivative to zero and solve for x	M1	
		Obtain answer $x = 2$ correctly, with no other solution	A1	[4]
	(ii)	Find the gradient of the curve when $x = 1$, must be simplified, allow 0.368	B1	
		Form the equation of the tangent when $x = 1$	M1	
		Show that it passes through the origin	A1	[3]
	(iii)	State or imply correct ordinates 0.36787, 0.54134, 0.44808	B1	
		Use correct formula, or equivalent, correctly with $h = 1$ and three ordinates	M1	
		Obtain answer 0.95 with no errors seen	A1	[3]

Q16.

8	 (i) (a) Use trig formulae and justify given result (b) Use 1 - sin² x = cos² x Obtain given result correctly 	B1 M1 A1 [3]]
	(ii) Use quotient or chain rule Obtain correct derivative in any form Obtain given result correctly	M1 A1 A1 [3]]
((iii) Obtain integral $\tan x + \sec x$ Substitute limits correctly Obtain exact answer $\sqrt{2}$, or equivalent	B1 M1 A1 [3]]

Q17.

8	(i)	Use product rule	M1	
		Obtain correct derivative in any form	A1	
		Substitute $x = \frac{1}{2}\pi$, and obtain gradient of -1 for normal	A1√	
		from $y' = \sin x - x \cos x$	ONLY	
		Show that line through $\left(\frac{1}{2}\pi, \frac{1}{2}\pi\right)$ with gradient -1 passes through $(\pi, 0)$	M1	
			A1	[5]
	(ii)	Differentiate $\sin x$ and use product rule to differentiate $x\cos x$ Obtain $x\sin x$, or equivalent	M1 A1	[2]
	(iii)	State that integral is $\sin x - x \cos x (+c)$	B1	
		Substitute limits 0 and $\frac{\pi}{2}$ correctly	M1	
		Obtain answer 1 S. R. Feeding limits into original <u>integrand</u> , 0/3	A1	[3]

Q18.

7	(i)	Use product or quotient rule	M1*	
		Obtain correct derivative in any form	A1	
		Equate derivative to zero and solve for x	M1*(dep)	
		Obtain $x = e^{0.5}$ or \sqrt{e}	A1	
		Obtain $\frac{1}{2e}$, or equivalent	A1	[5]
	(ii)	State or imply correct ordinates 0, 0.17328, 0.12206, 0.08664	B1	
		Use correct formula, or equivalent, correctly with $h = 1$ and four ordinates	M1	
		Obtain answer 0.34 with no errors seen	A1	[3]

Q19.

3	(i)	Obtain correct derivative Obtain $x = 2$ only	B1 B1	[2]
	(ii)	State or imply correct ordinates 0.61370, 0.80277, 1.22741, 1.78112 Use correct formula, or equivalent, correctly with $h=1$ and four ordinates Obtain answer 3.23 with no errors seen	B1 MI Al	[3]
	(iii)	Justify statement that the trapezium rule gives an over-estimate	B1	[1]

Q20.

8	(i)	Differentiate using chain or quotient rule	M1	
		Obtain derivative in any correct form	A1	
		Obtain given answer correctly	A1	[3]
	(ii)	Differentiate using product rule	M1	
		State derivative of $\tan \theta = \sec^2 \theta$	B1	
		Use trig identity $1 + \tan^2 \theta = \sec^2 \theta$ correctly	M1	
		Obtain $2\sec^3\theta - \sec\theta$	A1	[4]
	(iii)	Use $\tan^2 x = \sec^2 \theta - 1$ to integrate $\tan^2 x$	M1	
		Obtain 3sec θ from integration of 3sec θ tan θ	B1	
		Obtain $\tan \theta - 3\sec \theta$	A1	
		Attempt to substitute limits, using exact values	M1	
		Obtain answer $4 - 3\sqrt{2}$	A1	[5]

Q21.

5 (i) Differentiate to obtain $-2\sin x + 2\sin 2x$ or equivalent
Use $\sin 2x = 2\sin x \cos x$ or equivalent
Equate first derivative to zero and solve for xObtain $\frac{1}{3}\pi$ A1 [4]

© Cambridge International Examinations 2014

Page	5 Mark Scheme	Syllabus	Pape	r
	Cambridge International AS Level – October/November 2014	9709	22	
(ii)	Integrate to obtain form $k_1 \sin x + k_2 \sin 2x$		M 1	
	Obtain correct $2\sin x - \frac{1}{2}\sin 2x$		A1	
	Apply limits 0 and their answer from part (i)		M1	
	Obtain $\frac{3}{4}\sqrt{3}$ or exact equivalent		A1	[4]

P3 (variant1 and 3)

Q1.

5 (i) State derivative $-e^{-x} - (-2)e^{-2x}$, or equivalent Equate derivative to zero and solve for xObtain $p = \ln 2$, or exact equivalent A1 [4] (ii) State indefinite integral $-e^{-x} - (-\frac{1}{2})e^{-2x}$, or equivalent Substitute limits x = 0 and x = p correctly Obtain given answer following full and correct working A1 [4]

Q2.

8	(i)	Use product and chain rule	M1	
		Obtain correct derivative in any form, e.g. $15\sin^2 x \cos^3 x - 10\sin^4 x \cos x$	A1	
		Equate derivative to zero and obtain a relevant equation in one trigonometric function	M1	
		Obtain $2 \tan^2 x = 3$, $5 \cos^2 x = 2$, or $5 \sin^2 x = 3$	A1	
		Obtain answer $x = 0.886$ radians	A1	[5]
	(ii)	State or imply $du = -\sin x dx$, or $\frac{du}{dx} = -\sin x$, or equivalent	В1	
		Express integral in terms of u and du	M1	
		Obtain $\pm \int 5(u^2 - u^4) du$, or equivalent	A1	
		Integrate and use limits $u = 1$ and $u = 0$ (or $x = 0$ and $x = \frac{1}{2}\pi$)	M1	
		Obtain answer $\frac{2}{3}$, or equivalent, with no errors seen	A1	[5]

Q3.

5 (i) Differentiate to obtain
$$4\cos\frac{1}{2}x - \frac{1}{2}\sec^2\frac{1}{2}x$$
 B1

Equate to zero and find value of $\cos\frac{1}{2}x$ M1

Obtain $\cos\frac{1}{2}x = \frac{1}{2}$ and confirm $\alpha = \frac{2}{3}\pi$ A1 [3]

(ii) Integrate to obtain
$$-16\cos\frac{1}{2}x\dots$$
 B1
$$\dots + 2\ln\cos\frac{1}{2}x \text{ or equivalent}$$
 B1
Using limits 0 and $\frac{2}{3}\pi$ in $a\cos\frac{1}{2}x + b\ln\cos\frac{1}{2}x$ M1
Obtain $8 + 2\ln\frac{1}{2}$ or exact equivalent A1 [4]

Q4.

9	(i)	Use product rule Obtain correct derivative in any form, e.g. $4\sin 2x \cos 2x \cos x - \sin^2 2x \sin x$ Equate derivative to zero and use a double angle formula Reduce equation to one in a single trig function	M1 A1 M1* M1(dep*)	
		Obtain a correct equation in any form, e.g. $10 \cos^3 x = 6 \cos x$, $4 = 6 \tan^2 x$ or $4 = 10 \sin^2 x$ Solve and obtain $x = 0.685$	A1 A1	[6]
	(ii)	Using $du = \pm \cos x dx$, or equivalent, express integral in terms of u and du Obtain $\int 4u^2(1-u^2) du$, or equivalent Use limits $u = 0$ and $u = 1$ in an integral of the form $au^3 + bu^5$	M1 A1 M1	
		Obtain answer $\frac{8}{15}$ (or 0.533)	A1	[4]

Q5.

9	(i)	State coordinates (1, 0)	B1	[1]
	(ii)	Use correct quotient or product rule	M1	
		Obtain derivative in any correct form	A1	
		Equate derivative to zero and solve for x	M1	
		Obtain $x = e^2$ correctly	Al	[4]

© UCLES 2009

Page 7	Mark Scheme: Teachers' version	Syllabus	Paper
_	GCE A/AS LEVEL - October/November 2009	9709	31

(iii) Attempt integration by parts reaching $a\sqrt{x} \ln x \pm a \int \sqrt{x} \frac{1}{x} dx$	M1*
Obtain $2\sqrt{x} \ln x - 2\int \frac{1}{\sqrt{x}} dx$	A1
Integrate and obtain $2\sqrt{x} \ln x - 4\sqrt{x}$	A1
Use limits $x = 1$ and $x = 4$ correctly, having integrated twice	M1(dep*)
Justify the given answer	A1 [5]

Q6.

(i)	Use correct product rule	M1	
	Obtain correct derivative in any form	A1	
	Equate derivative to zero and find non-zero x	M1	
	Obtain $x = \exp(-\frac{1}{3})$, or equivalent	A1	
	Obtain $y = -1/(3e)$, or any In-free equivalent	Al	[5]
(ii)	Integrate and reach $kx^4 \ln x + l \int x^4 \cdot \frac{1}{x} dx$	MI	
	Obtain $\frac{1}{4}x^4 \ln x - \frac{1}{4} \int x^3 dx$	A1	
	Obtain integral $\frac{1}{4}x^4 \ln x - \frac{1}{16}x^4$, or equivalent	Al	
	Use limits $x = 1$ and $x = 2$ correctly, having integrated twice	M1	
	Obtain answer $4 \ln 2 - \frac{15}{16}$, or exact equivalent	A1	[5]
		Obtain correct derivative in any form Equate derivative to zero and find non-zero x Obtain $x = \exp(-\frac{1}{3})$, or equivalent Obtain $y = -1/(3e)$, or any In-free equivalent (ii) Integrate and reach $kx^4 \ln x + l \int x^4 \cdot \frac{1}{x} dx$ Obtain $\frac{1}{4}x^4 \ln x - \frac{1}{4} \int x^3 dx$ Obtain integral $\frac{1}{4}x^4 \ln x - \frac{1}{16}x^4$, or equivalent Use limits $x = 1$ and $x = 2$ correctly, having integrated twice	Obtain correct derivative in any form Equate derivative to zero and find non-zero x Obtain $x = \exp(-\frac{1}{3})$, or equivalent Obtain $y = -l/(3e)$, or any ln-free equivalent A1 Oil Integrate and reach $kx^4 \ln x + l \int x^4 \cdot \frac{1}{x} dx$ Obtain $\frac{1}{4}x^4 \ln x - \frac{1}{4} \int x^3 dx$ Obtain integral $\frac{1}{4}x^4 \ln x - \frac{1}{16}x^4$, or equivalent Use limits $x = 1$ and $x = 2$ correctly, having integrated twice A1 Obtain integral $\frac{1}{4}x^4 \ln x - \frac{1}{16}x^4$, or equivalent M1

Q7.

4	(i)	Obtain derivative of form $k \cos 3x \sin 3x$, any constant k Obtain $-24\cos 3x \sin 3x$ or unsimplified equivalent	M1 A1	
		Obtain $-6\sqrt{3}$ or exact equivalent	A1	[3]
	(ii)	Express integrand in the form $a+b\cos 6x$, where $ab \neq 0$ Obtain $2+2\cos 6x$ o.e. Obtain $2x+\frac{1}{3}\sin 6x$ or equivalent, condoning absence of $+c$, ft on a , b	M1 A1 A1√	[3]

Q8.

9	(i)	Use product rule Obtain correct derivative in any form Equate derivative to zero and solve for x Obtain answer $x = e^{-\frac{1}{2}}$, or equivalent	M1 A1 M1 A1	
		Obtain answer $y = -\frac{1}{2} e^{-1}$, or equivalent	A1	[5]
	(ii)	Attempt integration by parts reaching $kx^3 \ln x \pm k \int x^3 \cdot \frac{1}{x} dx$	M1*	
		Obtain $\frac{1}{3}x^3 \ln x - \frac{1}{3} \int x^2 dx$, or equivalent	A1	
		Integrate again and obtain $\frac{1}{3}x^3 \ln x - \frac{1}{9}x^3$, or equivalent	A1	
		Use limits $x = 1$ and $x = e$, having integrated twice	M1(dep*)	
		Obtain answer $\frac{1}{9}(2e^3 + 1)$, or exact equivalent	A1	[5]
		[SR: An attempt reaching $ax^2 (x \ln x - x) + b \int 2x(x \ln x - x) dx$ scores M1. Then	give the	
		first A1 for $I = x^2 (x \ln x - x) - 2I + \int 2x^2 dx$, or equivalent.]		

Q9.

5	(i)	Use correct quotient or chain rule Obtain the given answer correctly having shown sufficient working	M1 A1	[2]
	(ii)	Use a valid method, e.g. multiply numerator and denominator by $\sec x + \tan x$, and a version of Pythagoras to justify the given identity	B1	[1]
	(iii)	Substitute, expand $(\sec x + \tan x)^2$ and use Pythagoras once Obtain given identity	M1 A1	[2]
	(iv)	Obtain integral $2 \tan x - x + 2 \sec x$ Use correct limits correctly in an expression of the form $a \tan x + bx + c \sec x$, or	B1	
		equivalent, where $abc \neq 0$ Obtain the given answer correctly	M1 A1	[3]

Q10.

5	(i)	Either	Use correct product rule	M1	
			Obtain $3e^{-2x} - 6xe^{-2x}$ or equivalent	A1	
			Substitute $-\frac{1}{2}$ and obtain 6e	A1	
		Or /	Take In of both sides and use implicit differentiation correctly	M1	
			Obtain $\frac{dy}{dx} = y \left(\frac{1}{x} - 2 \right)$ or equivalent	A1	
			Substitute $-\frac{1}{2}$ and obtain 6e	A1	[3]
	(ii)	Use inte	egration by parts to reach $kxe^{-2x} \pm \int ke^{-2x} dx$	M 1	
		Obtain	$-\frac{3}{2}xe^{-2x} + \int \frac{3}{2}e^{-2x} dx \text{ or equivalent}$	A1	
		Obtain	$-\frac{3}{2}xe^{-2x}-\frac{3}{4}e^{-2x}$ or equivalent	A1	
		Substitu	ate correct limits correctly	DM1	
		Obtain	$-\frac{3}{}$ with no errors or inexact work seen	A1	[5]

Q11.

9	(i)	Substitute for x and dx throughout using $u = \sin x$ and $du = \cos x dx$, or equivalent	M1	
		Obtain integrand e^{2u}	A1	
		Obtain indefinite integral $\frac{1}{2}e^{2u}$	A1	
		Use limits $u = 0$, $u = 1$ correctly, or equivalent	M1	
		Obtain answer $\frac{1}{2}(e^2 - 1)$, or exact equivalent	A1	5

© Cambridge International Examinations 2014

Page 6	Mark Scheme	Syllabus	Paper
	GCE A LEVEL – May/June 2014	9709	33

(ii)	Use chain rule or product rule	M1	
	Obtain correct terms of the derivative in any form, e.g. $2\cos x e^{2\sin x}\cos x - e^{2\sin x}\sin x$	A1 + A1	
	Equate derivative to zero and obtain a quadratic equation in $\sin x$	M1	
	Solve a 3-term quadratic and obtain a value of x	M1	
	Obtain answer 0.896	A1	6