Q1.

(d)

1 mark for each diagram, 1 mark for each correct bond angle If not 3-dimensional diagram – 1 penalty.

[4]

Q2.

(c) (i)
$$H_{\circ}^{\circ}S_{\circ}^{\circ}H$$
 (1)

(ii) non-linear/bent/V-shaped (1)

(iii) H₂O has hydrogen bonds/H₂S does not <u>or</u> H₂S has van der Waals' forces only (1)

hydrogen bonds are stronger than van der Waals' forces \underline{or} H₂S has weaker intermolecular bonds than H₂O (1) [4]

Q3.

2 (a)
$$^{x}_{o}$$
 $H^{x}_{o}C^{x}_{o}C^{o}_{x}H$ (1) [1]

Q4.

1 (a) (i) between 117° and 120° [1]

(II) H.N.N.H

14 electrons must be shown single N-N bond [1] lone pair on each N atom [1]

(iii) between 107° and 109° [1] [4]

(b) ethene – van der Waals' forces [1] hydrazine – hydrogen bonds [1]

hydrogen bonds are stronger
or van der Waals' forces are weaker
[1] [3]

(c) correct dipole on O—H and N—H bonds [1]

labelled hydrogen bond shown between an O atom of H₂O and a H atom of N₂H₄ or between an N atom of N₂H₄ and a H atom of H₂O [1]

lone pair on O atom or on N atom in the H bond

- (e) (i) acid base/neutralization [1]
 - (ii) N atom has a lone pair of electrons
 or N atom can behave as a base
 or N atom can form dative bond
 [1]
 - (iii) each N atom has a lone pair
 or each nitrogen atom can behave as a base
 or each nitrogen atom can form a dative bond
 [1] [3]

Q5.

1 (a) (i) 2(1)

(ii) between 104° and 105° (1)

[2]

(b) ethanal CH₃CHO A (1)

ethanol CH₃CH₂OH C (1)

methoxymethane CH₃OCH₃ A (1)

2-methylpropane $(CH_3)_2CHCH_3$ **B** (1) [4]

(c) (i) hydrogen bonds (1)

- (c) (i) hydrogen bonds (1)
 - (ii) correct dipole on an -O—H bond (1)

hydrogen bond shown between the lone pair of an O and a H atom in an -OH group (1)

lone pair on O atom of CH₃OH or H₂O clearly shown in the hydrogen bond (1)

or

[4]

(d) hydrogen bonds exist between H₂O molecules (1)

hydrogen bonds cannot form between C₂H₅OC₂H₅ molecules (1)

[2]

[Total: 12]

Q6.

1 (a) Al 1s² 2s²2p⁶ 3s²3p¹ (1)

Ti 1s2 2s22p6 3s2 3p6 3d2 4s2 or

 $1s^2 2s^2 2p^6 3s^2 3p^6 4s^2 3d^2$ penalise any error (1) [2]

- (b) (i) pass chlorine gas (1) over heated aluminium (1)
 - (ii) aluminium glows (1) white/yellow solid formed (1)

chlorine colour disappears/fades (1) (any 2)

(iii)

correct numbers of electrons, i.e.

3 • per Al atom and 7x per Cl atom

i.e. 6 • and 42 x in total (1)

dative bond Cl to Al clearly shown by $\frac{x}{x}$ (1)

(c) chlorine is a strong/powerful oxidising agent (1) [1]

Q7.

- (a) fewer electrons in Cl₂ than in Br₂ (1)
 smaller van der Waals' forces in Cl₂ or stronger van der Waals' forces in Br₂ (1)
 [2]
 - (b) CO has a permanent dipole or N₂ does not (1) permanent dipole-permanent dipole interactions are stronger than those from induced dipoles (1)
 [2]

(c) (i) 'dot-and-cross' diagram (1)

(ii)

(iii) minimum is

allow bond angle around N atom between 109° and 104° (1)

[4]

(d)
$$-2(1)$$

[1]

Q9.

(f) (i) both have very similar/same van der Waals' forces

(1)

(ii) CH₃F has permanent dipole

(1) [2]

Q10.

(f) (i)

(1)

(ii) 180°

(1) [2]

Q11.

(c) (i) around the N atom there is only one lone pair around the S atom there are two lone pairs

both (1)

(ii) angle (a) or sulfur - no mark for this

because two lone pairs repel more than one lone pair **or** lone pair-lone pair repulsions are stronger than lone pair-bond pair repulsions

(1) [2]

Q12.

- (d) (i) hydrogen bonds (1)
 - (ii) lone pair on O atom of C₂H₅OH (1)
 - correct dipole O⁸⁻—H⁸⁺ on bond in one molecule of ethanol (1)

hydrogen bond shown between lone pair of an O atom and a hydrogen atom, i.e.

(1) [4]

Q13.

1 (a) (i)

- S atom has 6 and C atom has 4 electrons (1)
- S=C double bonds (4 electrons) clearly shown (1)
- (ii) linear and 180° (1) [3]

Q14.

$$\begin{bmatrix} x & x & x \\ x & x & x \end{bmatrix}^{2+} \begin{bmatrix} \vdots & \vdots & \vdots & \vdots \\ \vdots & \ddots & \vdots \end{bmatrix}^{2-} (i)$$

Q15.

1	(a)	ionic	(1)
		Na ⁺ and C <i>t</i>	(1)
		arranged in cubic lattice (diagram required)	
		Na* CI Na*	(1)
		each na⁺ ion surrounded by six Cℓ ions	
		or each CT ion surrounded by six Na ⁺ ions	
		may be in diagram or stated in words	(1) [4]
	(b)	in the solid, the ions cannot move	(1)
		in the melt, the ions move	
		or carry the charge/current	(1) [2]
Q16.			
(a)			
		5500 550	
	;	sulphur atom has 6 /carbon atom has 4 electrons	(1)

(1)

(1)

(1)

[2]

[2]

S=C double bonds (4 electrons) clearly shown

Q17.

(b)

linear

180°

double lobes along the x-axis (1)

[3]

- (b) (i) attraction between bonding electrons and nuclei (1)
 - attraction is electrostatic (1)
 - (ii) H_2 s-s **overlap** clearly shown must **not** be normal dot/cross diagram (1)
 - HC1 s-p **overlap** clearly shown
 overlap must involve s and p orbitals (1) [4]
- - (ii) the H and Cl atoms have different electronegativities

 or chlorine is more electronegative than hydrogen

 (1) [2]

allow two 'sausages' above and below the C-C axis

or two p orbitals overlapping sideways to form one (localised) π bond over two carbon atoms

(1) [1]

(e) $\Delta H_f^o = 2(-393.7) + 2(-285.9) - (-1411)$

= + 51.8 kJ mol⁻¹ (units given in qu.)

(3)

penalise errors: no 2 for -393.7

no 2 for -285.9

wrong sign for -(-1411)

[3]

[Total: 13]

Q18.

- (b) (i) giant ionic lattice (may be in diag.) (1)
 - strong ionic bonds (1)
 - (ii) simple molecular or discrete molecules

(may be shown in a diagram) (1)

with weak intermolecular forces or

weak van der Waals' forces

between them (1) [4]

www.megalecture.com

(1)

(1)

(1)

(iii) correct displayed structure for Al2Cl6

(1)

two correct co-ordinate bonds

(1)

[5]

Q19.

(ii) molecule contains both ketone and alkene (1)

[3]

(b) (i)
$$C_2H_2O + 2O_2 \rightarrow 2CO_2 + H_2O$$
 (1)

(ii) from eqn.,
$$42 \text{ g C}_2\text{H}_2\text{O} \rightarrow 48 \text{ dm}^3 \text{ of CO}_2 (1)$$

whence 3.5 g
$$C_2H_2O \rightarrow \frac{48 \times 3.5}{42} \text{ dm}^3 \text{ of } CO_2 \text{ (1)}$$

or
$$n(C_2H_2O) = \frac{42}{3.5} = 0.0833 (1)$$

$$n(CO_2) = 2 \times 0.083 = 0.0166(1)$$

vol. of
$$CO_2 = 0.0166 \times 24 = 4.0 \text{ dm}^3 (1)$$

allow e.c.f. on wrong eqn. in (b)(i)

penalise significant figure error

[4]

Q20.

CO₂ molecules have volume

(d) graphite has delocalised electrons

(1) [1]

(e) (i)
$$SiO_2 + 2C \rightarrow SiC + CO_2$$
 or $SiO_2 + 3C \rightarrow SiC + 2CO$

(1)

(ii) diamond because SiC is hard

(1) [2]

[Total: 13]

Q21.

(b) (i) giant lattice (may be in diagram) (1) with strong ionic bonding (1)

(ii) ionic (1)

(iii) -1 (1)

(iv) ... + - ...

: Na: *.H ...

correct numbers of electrons (1) correct charges (1)

(v)

compound	MgH ₂	AlH ₃	PH ₃	H₂S
oxidation number of element in the hydride	+2	+3	-3	-2

correct oxidation nos. for MgH_2 and AIH_3 (1) correct oxidation nos. for PH_3 and H_2S (1) [8]

Q22.

1 (a)

		200	10	
number of bond pairs	number of lone pairs	shape of molecule	formula of a molecule with this shape	
3	0	trigonal planar	BH ₃	
4	0	tetrahedral	CH₄ allow other Group IV hydrides	
3	1	pyramidal or trigonal pyramidal	NH ₃ allow other Group V hydrides	
2	2	non-linear or bent or V-shaped	H₂O allow other Group VI hydrides	

1 mark for each correct row

(3 × 1) [3]

(b) (i)

(1)

(ii) octahedral or square-based bipyramid

(1)

(iii) 90°

(1) [3]

[Total: 6]

Q23.

1 (a)

both 'dot-and-cross' diagrams correct NH₃ is pyramidal **or** trigonal pyramidal (1) (1)

CH₄ is tetrahedral

(1) [3]

(b) (i) nitrogen and hydrogen have different electronegativities N-H bond has a dipole or

(1)

 $N^{\delta-}$ — $H^{\delta+}$ or

(1)

(ii) molecule is not symmetrical or dipoles do not cancel out

bonding pair is unequally shared

(1)

(iii) NH₃ has higher boiling point than expected from *M*_r value or has higher boiling point than methane or NH₃ is soluble in water (1) [4]

(c) three covalent N–H bonds (1) one co-ordinate (dative covalent) N–H bond (1) one ionic bond between NH₄⁺ and C*l*⁻ (1) [3]