ENTROPY

Fahad H. Ahmad

www.megalecture.com

www.youtube.com/megalecture

(C)	(1)	Predict the sign of AS* for this reaction. Explain your answer.	
		$2H_2S(g) + CH_4(g) \rightleftharpoons CS_2(g) + 4H_2(g)$ $\Delta H^0 = +241 \text{ kJ mol}^{-1}$	1
			. [1]
	The	e free energy change, ΔG° , for this reaction at 1000 K is +51 kJ mol ⁻¹ .	
	(ii)	Calculate the value of $\Delta S^{\mathfrak o}$ for this reaction, stating its units.	>
		ΔS° = units	. [2]
(d)		w would the value of ΔG° , and hence the spontaneity (feasibility) of this reaction change temperature increases? Explain your answer.	
/16	/qp4		. [=]
(c)	(i)	ΔS^{\bullet} will be positive, because more gas moles on the RHS/products	[1]
	(ii)	$\Delta S^{\alpha} = (\Delta H^{\alpha} - \Delta G^{\alpha})/T = (241 - 51)/1000 = 0.19 \text{ OR } 190 \text{ kJ mol}^{-1} \text{ K}^{-1} \text{ OR J mol}^{-1} \text{ K}^{-1}$	[1] [1]
(d)		$\Delta G^{\rm e}$ will become less positive/more negative as T increases,because $\Delta S^{\rm e}$ is positive ($or-T\Delta S^{\rm e}$ is more negative)therefore the reaction becomes more feasible/spontaneous as T increases	[2]
5	Cad	dmium ions form complexes with primary amines and with 1,2-diaminoemane.	
		$Cd^{2+}(aq) + 4CH_3NH_2(aq) \rightleftharpoons [Cd(CH_3NH_2)_4]^{2+}(aq)$ $K_{stab} = 3.6 \times 10^6$ equilibrium	rium I
Cd²	²+(ag) + $2H_3NCH_3CH_3NH_3(aq) \rightleftharpoons [Cd(H_3NCH_3CH_3NH_3)_3]^{2+}(aq)$ $K_{atab} = 4.2 \times 10^{10}$ equilibrium	rium II

(b) Values for ΔH° and ΔG° for equilibria I and II, and the value of ΔS° for equilibrium I, are given in the table below. All values are at a temperature of 298 K.

equilibrium	ΔH° /kJ mol⁻¹	∆G°/kJ mol⁻¹	ΔS°/JK-1mol-1			
I	-57.3	-37.4	-66.8			
II	-56.5	-60.7	to be calculated			

(1)	Suggest a reason why the Art values for the two equilibria are very similar.	
(ii)	Calculate ΔS° for equilibrium II.	[1]
	ΔS* = J K⁻¹ mol	-1 [1]
(iii)	Suggest a reason for the difference between the ΔS° you have calculated for equilibriand that for equilibrium I given in the table.	ium II
(iv) V	Vhich of the two complexes is the more stable? Give a reason for your answer.	
S/16/qp		
(b) (i)	(each complex is formed by) making (4 ×)N-Cd bonds and breaking (6 ×) O-Cd bonds or same types of/similar bonds forming/breaking or same number of bonds forming/breaking	1
(ii)	$\Delta S = (\Delta H - \Delta G)/T = (60.7 - 56.5) \times 1000/298 = (+)14/(+)14.1$	1
(iii)	fewer moles (of solutes) are forming (one mole of) the complex (so less loss of disorder) or one en displaces two H ₂ O whereas one CH ₃ NH ₂ only displaces one H ₂ O	1
(iv)	The $[Cd(H_2NCH_2CH_2NH_2)_2]^{2+}$ / equilibrium 2 complex (is more stable) because: either K_{stab} is greater or ΔG^{\bullet} is more negative.	1
	-	

(c) (i) Predict the sign of ΔS^o for this reaction. Explain your answer. 	
	$2H_2S(g) + CH_4(g) \rightleftharpoons CS_2(g) + 4H_2(g)$ $\Delta H^0 = +241 \text{ kJ mol}$	-1
		[1]
Т	The free energy change, ΔG° , for this reaction at 1000 K is +51 kJ mol ⁻¹ .	
(ii	i) Calculate the value of ΔS° for this reaction, stating its units.	
	ΔS° = units	[2]
	How would the value of ΔG° , and hence the spontaneity (feasibility) of this reaction channel temperature increases? Explain your answer.	ge as
		[2]
S/16/q _l	p43	
(c) (i)	ΔS^{e} will be positive, because more gas moles on the RHS/products	[1]
(ii)	$\Delta S^{\circ} = (\Delta H^{\circ} - \Delta G^{\circ})/T = (241 - 51)/1000 = 0.19 \text{ OR } 190$ kJ mol ⁻¹ K ⁻¹ OR J mol ⁻¹ K ⁻¹	[1] [1]
(d)	ΔG^{e} will become less positive/more negative as T increases,because ΔS^{e} is positive ($or-T\Delta S^{\text{e}}$ is more negative)therefore the reaction becomes more feasible/spontaneous as T increases	[2]

(d) The equation for the formation of magnesium oxide from its elements is shown.

$$Mg(s) + \frac{1}{2}O_2(g) \rightarrow MgO(s)$$
 $\Delta H^{\circ} = -602 \text{ kJ mol}^{-1}$

$$\Delta H^{\circ} = -602 \,\text{kJ} \,\text{mol}^{-1}$$

substance	Sº/JK-1 mol-1						
Mg(s)	32.7						
O ₂ (g)	205						
MgO(s)	26.9						

Use the equation and the data given in the table to calculate ΔG° for the reaction at 25 °C.

m/17/qp42

M1 correct use of $\Delta G = \Delta H - T\Delta S$	1
M2 $\Delta S = 26.9 - (32.7 + 102.5) = -108.3 \text{ J K}^{-1} \text{ mol}^{-1} \text{ OR } -0.1083 \text{ kJ K}^{-1} \text{ mol}^{-1}$	1
M3 Δ G = -602 - (298 × (-0.1083)) = -570	1
M4 units: kJ mol ⁻¹	1

•	-	Iron/III	\	be reduced	to iron most			man a social a	at a tam	anaratura af	10000
•	C	Ironcili	i oxide can	ne realicea	to iron mei	arusino	carpon	monoxide	ar a ren	iberature of	10000
•	~,	11 011/111	, onide odili	00100000	to il oli illo	ai aoiiig	Out Doil	IIIOIIOMIGO	at a ton	ipolatalo ol	

$$Fe_2O_3(s) + 3CO(g) \rightarrow 2Fe(s) + 3CO_2(g)$$
 $\Delta H^{\circ} = -43.6 \text{ kJ mol}^{-1}$

$$\Delta H^{\circ} = -43.6 \,\text{kJ} \,\text{mol}^{-1}$$

Some relevant standard entropies are given in the table.

substance	Fe ₂ O ₃ (s)	CO(g)	Fe(s)	CO ₂ (g)		
S°/JK ⁻¹ mol ⁻¹	+90	+198	+27	+214		

(i)	What is	meant b	y the	term	entropy?
-----	---------	---------	-------	------	----------

(ii) Calculate the standard entropy change, ΔS° , for this reaction.

$$\Delta S^{\circ} = J K^{-1} mol^{-1}$$
 [2]

(iii) Calculate the standard Gibbs free energy change, ΔG°, for this reaction at 25°C.

$$\Delta G^{\circ} = kJ mol^{-1}$$
 [2]

Suggest why a temperature of 1000°C is usually used for this reaction, even though the reaction is spontaneous (feasible) at 25 °C. Explain your answer.

......

3(c)(i)	(entropy is a measure/degree of the) disorder of a system/substance	1	
			1
3(c)(ii)	$\Delta S^{\alpha} = (2 \times 27) + (3 \times 214) - (90) - (3 \times 198)$ OR 696 - 684	1	
	$\Delta S^{e} = (+) 12 (J K^{-1} mol^{-1})$	1	2
3(c)(iii)	$\Delta G^{\alpha} = -43.6 - (298 \times 12/1000)$	1	
	$\Delta G^{\bullet} = -47.2 \text{ (kJ mol}^{-1}\text{)}$	1	2
3(c)(iv)	high E_a and to speed up the rate	1	1

The spontaneity (feasibility) of a chemical reaction depends on the standard Gibbs free energy change, ΔG° . This is related to the standard enthalpy and entropy changes by the equation shown.

$$\Delta G^{\circ} = \Delta H^{\circ} - T \Delta S^{\circ}$$

(a)	State	and	explain	whether	the	following	processes	will	lead	to	an	increase	or	decrease	ir
	entrop	y.													

(i)	the reaction of magnesium with hydrochloric acid	
	entropy change	
	explanation	 [41
(ii)	solid potassium chloride dissolving in water	[1]
	entropy change	
	explanation	
(iii)	steam condensing to water	[1]
	entropy change	
	explanation	
		[1]

(b) Magnesium carbonate can be decomposed.

$$MgCO_3(s) \rightarrow MgO(s) + CO_2(g)$$
 $\Delta H^{\circ} = +117 \text{ kJ mol}^{-1}$

Standard entropies are shown in the table.

substance	MgCO ₃ (s)	MgO(s)	CO ₂ (g)
Se/J mol-1 K-1	+65.7	+26.9	+214

(i) Calculate ΔG° for this reaction at 298 K. Include a relevant sign and give your answer to **three** significant figures.

$$\Delta G^{\circ} = \dots kJ \, \text{mol}^{-1} \, [3]$$

(ii) Explain, with reference to ΔG° , why this reaction becomes more feasible at higher temperatures.

[1]

(c) On heating, sodium hydrogencarbonate decomposes into sodium carbonate as shown.

$$2NaHCO_3(s) \rightarrow Na_2CO_3(s) + CO_2(g) + H_2O(g)$$
 $\Delta H^{\circ} = +130 \text{ kJ mol}^{-1}$ $\Delta S^{\circ} = +316 \text{ J mol}^{-1} \text{ K}^{-1}$

Calculate the **minimum** temperature at which this reaction becomes spontaneous (feasible). Show your working.

w/16/qp43

3(a)(i)	(entropy) increases/is positive and H ₂ /gas is formed	1	1
3(a)(ii)	(entropy) increases/is positive and (KCl (aq)) solution has (free) moving/mobile ions/aqueous ions	1	1
3(a)(iii)	(entropy) decreases/is negative and decrease in gas	1	1
3(b)(i)	$\Delta S^{\bullet} = 26.9 + 214 - 65.7 = (+) 175.2 (J K^{-1} mol^{-1})$	1	
	$\Delta G^{\circ} = 117 - (298 \times 175.2/1000)$ OR $\Delta G^{\circ} = 117000 - (298 \times 175.2)$	1	
	$\Delta G^{e} = +64.8 \text{ (kJ mol}^{-1})$	1	3
3(b)(ii)	$T\Delta S$ is more positive than $\Delta H/T\Delta S$ increases/ $-T\Delta S$ more negative		
	and ΔG is negative/decrease/less positive	1	1
3(c)	use of $\Delta G = 0$ or $\underline{T\Delta S} = 1$	1	
	Δ <i>H</i> T=130/(316/1000)= 410/411/412/411.4 (K)	1	2
			2

2016 Specimen Paper Question on Entropy

7 (a) The table lists the equations for five processes.

For each process, predict the sign of ΔS .

process	sign of ΔS
$NaBr(s) + (aq) \rightarrow NaBr(aq)$	
$H_2O(I) \rightarrow H_2O(g)$	
$2H_2(g) + O_2(g) \rightarrow 2H_2O(g)$	
$CoCl_2(s) + 6H_2O(l) \rightarrow CoCl_2.6H_2O(s)$	

[2]

(b) Ethanol can be combusted as shown in the equation.

$$\text{CH}_3\text{CH}_2\text{OH(I)} + 3\text{O}_2(g) \rightarrow \ 2\text{CO}_2(g) + 3\text{H}_2\text{O(I)}$$

Standard entropies are shown in the table.

substance	CH ₃ CH ₂ OH(I)	O ₂ (g)	CO ₂ (g)	H ₂ O(I)
S ^o , J K ⁻¹ mol ⁻¹	161	205	214	70

Calculate the standard entropy change, ΔS^{o} , for this reaction.

$$\Delta S^{o} = J K^{-1} mol^{-1} [2]$$

(c) The combustion of ethanol is an exothermic reaction.

This reaction occurs spontaneously at low temperatures but does **not** occur at very high temperatures. Explain why.

(d) The decomposition of calcium carbonate is an endothermic reaction.

$$CaCO_3(s) \rightarrow CaO(s) + CO_2(g)$$

 $\Delta H = +178 \text{ kJ mol}^{-1} \text{ and } \Delta S = +159 \text{ J K}^{-1} \text{ mol}^{-1}$

Calculate the **minimum** temperature at which this reaction becomes feasible. Show all your working.

[3]

[Total: 9]

Marking Scheme

(a)

process	sign of ∆S
$NaBr(s) + (aq) \rightarrow NaBr(aq)$	+
$H_2O(I) \rightarrow H_2O(g)$	+
$2H_2(g) + O_2(g) \rightarrow 2H_2O(g)$	-
$\begin{array}{c} CoCl_2(s) + 6H_2O(l) \rightarrow \\ CoCl_2.6H_2O(s) \end{array}$	-

2 correct, (1) mark

4 correct, (2) marks

[2]

(b)
$$\Delta S^{\circ} = (214 \times 2) + (70 \times 3) - (161 \times 1) - (205 \times 3)$$

= -138 J K⁻¹ mol⁻¹ [2]

- (c) As temperature increases $T\Delta S$ is more negative or $-T\Delta S$ increases (1) At high temperature $T\Delta S$ is more negative than ΔH (so ΔG is positive) (1) [2]
- (d) the reaction is feasible, ΔG is negative so $T > \Delta H/T \Delta S$ or use of $T = \Delta H/T \Delta S$ (1)

$$T = 178000/159$$
 (1)
 $T = 1119.5 \text{ K units required or } T > 1120 \text{ K (1)}$

[3]

IB QUESTIONS on ENTROPY

- 1. Which change leads to an increase in entropy?
 - A. $CO_2(g) \rightarrow CO_2(s)$
 - B. $SF_6(g) \rightarrow SF_6(1)$
 - C. $H_2O(1) \rightarrow H_2O(s)$
 - D. $NaCl(s) \rightarrow NaCl(aq)$

(Total 1 mark)

2. The reaction between but-1-ene and water vapour produces butan-1-ol.

$$C_4H_8(g) + H_2O(g) \rightarrow C_4H_9OH(1)$$

The standard entropy values (S^{Θ}) for but-1-ene, water vapour and butan-1-ol are 310, 189 and 228 J K⁻¹ mol⁻¹ respectively. What is the standard entropy change for this reaction in J K⁻¹ mol⁻¹?

- A. –271
- B. +271
- C. -107
- D. +107

(Total 1 mark)

3. What are the signs of ΔH^{Θ} and ΔS^{Θ} for a reaction that is non-spontaneous at low temperature but spontaneous at high temperature?

	ΔH^{Θ}	ΔS^{Θ}
A.	-	I
B.	+	-
C.	-	+
D.	+	+

4. Consider the following reaction:

$$N_2(g) + 3H_2(g) \implies 2NH_3(g)$$

(i) Suggest why this reaction is important for humanity.

(1)

(ii) Using the average bond enthalpy values in Table 10 of the Data Booklet, calculate the standard enthalpy change for this reaction.

(4)

(iii) The absolute entropy values, S, at 238 K for $N_2(g)$, $H_2(g)$ and $NH_3(g)$ are 192, 131 and 193 J K⁻¹ mol⁻¹ respectively. Calculate ΔS^{Θ} for the reaction and explain the sign of ΔS^{Θ} .

(2)

(iv) Calculate ΔG^{Θ} for the reaction at 238 K. State and explain whether the reaction is spontaneous.

(3)

(v) If ammonia was produced as a liquid and not as a gas, state and explain the effect this would have on the value of ΔH^{Θ} for the reaction.

(2)

(Total 12 marks)

5. Which reaction causes a decrease in the entropy of the system?

A.
$$CaCO_3(s) \rightarrow CaO(s) + CO_2(g)$$

B.
$$2H_2(g) + O_2(g) \rightarrow 2H_2O(1)$$

C.
$$2C(s) + O_2(g) \rightarrow 2CO(g)$$

D.
$$2SO_3(g) \rightarrow 2SO_2(g) + O_2(g)$$

6. Consider the following reaction	6.	Consider	the	follo	owing	reaction
---	----	----------	-----	-------	-------	----------

$$2CH_3OH(g) + H_2(g) \rightarrow C_2H_6(g) + 2H_2O(g) \, \square \, \, \square$$

(a)	The standard enthalpy change of formation for CH ₃ OH(g) at 298 K is -201 kJ mol ⁻¹ and	
	for $H_2O(g)$ is -242 kJ mol ⁻¹ . Using information from Table 11 of the Data Booklet,	
	determine the enthalpy change for this reaction. (Check the Marking Scheme for Missing Data)	
		(2)
(b)	The standard entropy for CH ₃ OH(g) at 298 K is 238 J K ⁻¹ mol ⁻¹ , for H ₂ (g) is	
	131 J K ⁻¹ mol ⁻¹ and for $H_2O(g)$ is 189 J K ⁻¹ mol ⁻¹ . Using information from Table 11	
	(Check Marking Scheme) of the Data Booklet, determine the entropy change for this reaction.	
		(2)

(c)	Calculate the standard change in free energy, at 298 K, for the reaction and deduce whether the reaction is spontaneous or non-spontaneous.
	(3) (Total 7 marks)

7. What is the standard entropy change, ΔS^{Θ} , for the following reaction?

$$2\mathrm{CO}(g) + \mathrm{O}_2(g) \to 2\mathrm{CO}_2(g)$$

CO(g)		$O_2(g)$	CO ₂ (g)
$S^{\Theta}/J \text{ K}^{-1} \text{ mol}^{-1}$	198	205	214

- A. -189
- B. -173
- C. +173
- D. +189

- 8. A reaction has a standard enthalpy change, ΔH^{Θ} , of +10.00 kJ mol⁻¹ at 298 K. The standard entropy change, ΔS^{Θ} , for the same reaction is +10.00 J K⁻¹ mol⁻¹. What is the value of ΔG^{Θ} for the reaction in kJ mol⁻¹?
 - A. +9.75
 - B. +7.02
 - C. -240
 - D. -2970

(Total 1 mark)

- **9.** Which reaction has the greatest increase in entropy?
 - A. $C_3H_8(g) + 5O_2(g) \rightarrow 3CO_2(g) + 4H_2O(g) \square \square$
 - B. $H_2(g) + Cl_2(g) \rightarrow 2HCl(g)$
 - C. $N_2(g) + 3H_2(g) \rightarrow 2NH_3(g)$
 - D. $C_2H_4(g) + H_2(g) \rightarrow C_2H_6(g)$

(Total 1 mark)

- **10.** Which reaction has the largest increase in entropy?
 - A. $H_2(g) + Cl_2(g) \rightarrow 2HCl(g)$
 - B. $Al(OH)_3(s) + NaOH(aq) \rightarrow Al(OH)_4^-(aq) + Na^+(aq)$
 - C. $Na_2CO_3(s) + 2HCl(aq) \rightarrow 2NaCl(aq) + CO_2(g) + H_2O(l)$
 - D. $BaCl_2(aq) + Na_2SO_4(aq) \rightarrow BaSO_4(s) + 2NaCl(aq)$

11. When hydrogen peroxide decomposes, the temperature of the reaction mixture increases.

$$2H_2O_2(aq) \rightarrow O_2(g) + 2H_2O(1)$$

What are the signs of ΔH , ΔS and ΔG for this reaction?

	ΔH	ΔS	ΔG
A.	_	-	1
B.	_	+	_
C.	+	+	_
D.	_	+	+

(Total 1 mark)

- **12.** Which reaction has the greatest increase in entropy?
 - A. $SO_2(g) + 2H_2S(g) \rightarrow 2H_2O(1) + 3S(s)$
 - B. $CaO(s) + CO_2(g) \rightarrow CaCO_3(s)$
 - $C. \qquad CaC_2(s) + 2H_2O(l) \rightarrow Ca(OH)_2(s) + C_2H_2(g)$
 - $D. \qquad N_2(g) + O_2(g) \rightarrow 2NO(g)$

(Total 1 mark)

- 13. ΔG^{Θ} calculations predict that a reaction is always spontaneous for which of the following combinations of ΔH^{Θ} and ΔS^{Θ} ?
 - A. $+\Delta H^{\Theta}$ and $+\Delta S^{\Theta}$
 - B. $+\Delta H^{\Theta}$ and $-\Delta S^{\Theta}$
 - C. $-\Delta H^{\Theta}$ and $-\Delta S^{\Theta}$
 - D. $-\Delta H^{\Theta}$ and $+\Delta S^{\Theta}$

	Some words used in chemistry can have a specific meaning which is different to their meaning in everyday English.					
S	State what the term <i>spontaneous</i> means when used in a chemistry context.					
••						
••	••••••				(To	otal 1 m
		nn be hydrogenated ir ta below to answer th		a nickel catalyst to for follow.	m propane.	
		Compound	Formula	$\Delta H_{\rm f}^{\Theta} / \text{kJ mol}^{-1}$	S ^O / J K ⁻¹ mol ⁻¹	
		hydrogen	H ₂ (g)	0	+ 131	
		propane	$C_3H_8(g)$	- 104	+ 270	
		propene	$C_3H_6(g)$	+ 20.4	+ 267	
		tine why the value for		the hydrogenation of		ero.
(-	(II) Care	culate the standard en	tharpy change for			
					Property	

(iii)	Calculate the standard entropy change for the hydrogenation of propene.	
		(2)
(iv)	Determine the value of ΔG^{Θ} for the hydrogenation of propene at 298 K.	
		(2)
		(2)
(v)	At 298 K the hydrogenation of propene is a spontaneous process. Determine the temperature above which propane will spontaneously decompose into propene and hydrogen.	
	(T	(2) otal 9 marks)

16. (Not in Syllabus) What is the standard free energy change, ΔG^{Θ} , in kJ, for the following reaction?

$$C_2H_5OH(1) + 3O_2(g) \rightarrow 2CO_2(g) + 3H_2O(g)$$

Compound	$\Delta G_{ m f}^{ m \Theta}$ / kJ mol $^{-1}$
C ₂ H ₅ OH(l)	-175
CO ₂ (g)	-394
H ₂ O(g)	-229
$O_2(g)$	0

C.
$$-448$$

(Total 1 mark)

17. Which reaction has the most negative change in entropy?

A.
$$2SO_2(g) + O_2(g) \rightarrow 2SO_3(g)$$

B.
$$NH_4Cl(s) \rightarrow NH_3(g) + HCl(g)$$

$$C. \qquad PbCl_2(s) \rightarrow Pb^{2+}(aq) + 2Cl^{-}(aq)$$

D.
$$C(s) + O_2(g) \rightarrow CO_2(g)$$

(Total 1 mark)

MARKING SCHEME

1. D

2. A [1]

3. D

4. (i) fertilizers / increasing crop yields; production of explosives for mining;

1 max

(ii) $\Delta H = \text{(sum of energies of bonds broken)} - \text{(sum of energies of bonds formed)};$

Can be implied by working.

correct substitution of values and numbers of bonds broken;

correct substitution of values and numbers of bonds made;

$$(\Delta H = (N \equiv N) + 3(H - H) - 6(N - H) = 944 + 3(436) - 6(388) =) -76.0 \text{ (kJ)};$$

Allow ECF.

Do not penalize for sig. fig. or units.

Award [4] for correct final answer.

(iii)
$$(\Delta S^{\Theta}[2 \times 193] - [192 + 3 \times 131]) = -199 \text{ (J K}^{-1} \text{ mol}^{-1});$$

Allow ECF.

four gaseous molecules generating two gaseous molecules /

fewer molecules of gas;

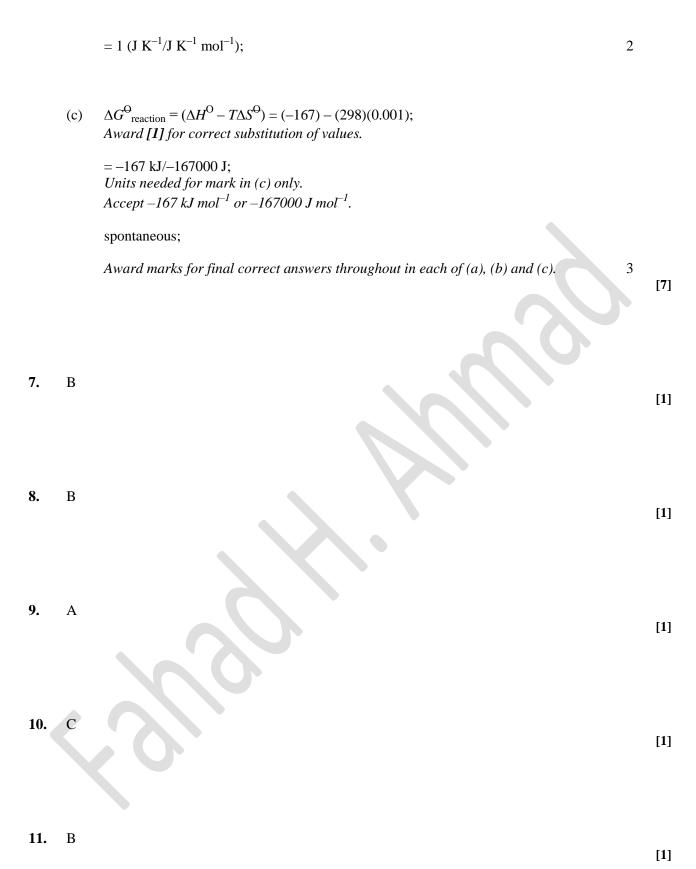
(iv)
$$(\Delta G^{\Theta} = \Delta H^{\Theta} - T \Delta S^{\Theta} = -76.0 - 298(-0.199)) = -16.7 \text{ (kJ)};$$

Spontaneous;
 ΔG is negative;

Do not penalize for SF.

(v) heat released when gas \rightarrow liquid;

 ΔH° becomes more negative;


2 **[12]**

3

6. (a)
$$\Delta H_{\text{reaction}}^{\Theta} = \Sigma \Delta H_{\text{f}}^{\Theta}(\text{products}) - \Sigma \Delta H_{\text{f}}^{\Theta}(\text{reactants})$$

 $= [(1)(-85) + (2)(-242)] - [(2)(-201)];$
 $= -167 \text{ (kJ/kJ mol}^{-1});$
 $Award [1] \text{ for } (+) 167.$

(b)
$$\Delta S^{\Theta}_{\text{reaction}} = \Sigma S^{\Theta}(\text{products}) - \Sigma S^{\Theta}(\text{reactants})$$

= $[(1)(230) + (2)(189)] - [(2)(238) + (1)(131)];$

2

12. C

[1]

13. D

[1]

[1]

14. the reaction gives out (Gibbs Free) energy that can do work; ΔG for the reaction has a negative value; a reaction that occurs without adding energy (beyond that required to overcome energy barrier);

1 max

15. (i) by definition ΔH_h^{Θ} of elements (in their standard states) is zero / no reaction involved / *OWTTE*;

1

(ii) $\Delta H = -104 - (+20.4);$ = -124.4 (kJ mol⁻¹); Award [1 max] for 124.4 (kJ mol⁻¹). Award [2] for correct final answer.

2

(iii) $\Delta S = 270 - (267 + 131);$ = -128 (J K mol⁻¹); Award [1 max] for +128 (J K⁻¹ mol⁻¹). Award [2] for correct final answer.

2

(iv) $\Delta G = \Delta H - T\Delta S = -124.4 - \frac{(-128 \times 298)}{1000}$;

 $= -86.3 \text{ kJ mol}^{-1};$

2

Units needed for the mark.

Award [2] for correct final answer.

Allow ECF if only one error in first marking point.

(v) $\Delta G = \Delta H - T\Delta S = 0 / \Delta H = T\Delta S;$ T = -124.4 = -0.72 K / 600 S

$$T = \frac{-124.4}{-128/1000} = 972 \text{ K} / 699 \text{ °C};$$

2

Only penalize incorrect units for T and inconsistent ΔS value once in (iv) and (v).

[9]

16. B [1]

17. A [1]

SHOEIFFAT QUESTIONS

Basic Questions

<u>BO 1</u> Predict the sign of the entropy change, ΔS° , for the following processes:

a. $PCl_5(g) \rightarrow PCl_3(g) + Cl_2(g)$

1 mole of a gas is producing 2 moles of gases \Rightarrow disorder increases. ΔS° is positive.

b. $2H(g) \rightarrow H_2(g)$

2 moles of gases are producing 1 mole of gas \Rightarrow disorder decreases. ΔS° is negative.

(c) Fluorine gas, an oxidizing agent, is bubbled into a solution of potassium bromide at 25°C. The balanced equation for the reaction occurring is: $F_2(g)+2Br^-(aq) \rightarrow 2F^-(aq)+Br_2(aq)$

Predict the sign of ΔS° for the reaction at 25°C. Justify your prediction.

The sign of ΔS° is negative.

One of the reactants, F_2 , is a gas at 25°C, but there are no gaseous products. Gases have high entropies, so the entropy of the reactants is greater than the entropy of the products, making ΔS° negative.

<u>BO 2</u> Consider the following process: $Zn(s) + \frac{1}{2}O_2(g) \rightarrow ZnO(s)$

a. Calculate ΔS° at 298K, given the following S° values, in J.K⁻¹ mol⁻¹: ZnO: 44; Zn: 42; O₂: 205.

$$\Delta S^{\circ} = S_{ZnO(s)}^{\circ} - S_{Zn(s)}^{\circ} - \frac{1}{2} S_{O_2(g)}^{\circ} = (44) - (42) - (\frac{205}{2}) = -100.5 \text{J/mol K}$$

b. Is the sign of ΔS° expected?

yes, because 1 mole of solid and 0.5 mole of gas are becoming 1 mole of solid.

<u>BQ 4</u> Consider the following process: $H_2O(s) \rightarrow H_2O(l)$ $\Delta H^{\circ} = 6.03 \text{ kJ}$

Given $\Delta S^{\circ} = 22.1$ J/K.mol, show that the melting of ice becomes spontaneous at 0°C.

Given $\Delta S^{\circ} = 22.1 \text{ J/K.mol}$, $\Delta H^{\circ} = 6.03 \text{ kJ}$, $T = 0^{\circ}\text{C} + 273 = 273\text{K}$

RTF: rxn is spontaneous

$$\Delta G^{\circ} = \Delta H^{\circ} - T \Delta S^{\circ} = (6.03) - (273)(22.1 \times 10^{-3}) = -3.3 \times 10^{-3} \text{kJ}$$

Since ΔG° is negative then the process is spontaneous.

<u>BQ 5</u> Consider the following process: $C_6H_6(l) \rightarrow C_6H_6(g)$

Given for the above process $\Delta H^{\circ}_{vap} = 30.8 \text{ kJ/mol}$, and $\Delta S^{\circ}_{vap} = 87.2 \text{ J/K.mol}$.

Calculate the boiling point of benzene.

Given: $\Delta H^{\circ}_{vap} = 30.8 \text{ kJ/mol}$, $\Delta S^{\circ}_{vap} = 87.2 \text{ J/K.mol}$ RTF: boiling point of benzene

A phase change at equilibrium is isothermal, ie occurs at same t, therefore $\Delta G^{\circ} = 0 \text{kJ}$

$$\Delta G^{\circ} = \Delta H^{\circ} \text{vap} - T\Delta S^{\circ} \text{vap} = (30.8) - T(87.2 \times 10^{-3}) = 0 \text{kJ} \Rightarrow T = \frac{30.8}{87.2 \times 10^{-3}} = 353 \text{K} \Rightarrow t = 80^{\circ} \text{C}$$

- **BQ** 7 Answer the following questions about nitrogen, hydrogen, and ammonia.
- Draw the complete Lewis electron-dot diagrams for N₂ and NH₃.

H--N--H / H - N - H / H - N - H / H + Calculate the standard free-energy change, ΔG , that occurs when 24.0 g of H₂(g) react with (b) excess $N_2(g)$ at 298 K according to the reaction represented below.

$$N_2(g) + 3H_2(g) \leftrightarrows 2NH_3(g)$$
 $\Delta G^{\circ}_{298} = -34 \text{ kJ mol}^{-1}$
Given: m of $H_2 = 24.0 \text{ g}$, $\Delta G^{\circ}_{298} = -34 \text{ kJ mol}^{-1}$

RTF: ΔG

$$n_{H_2} = \frac{24.0}{2} = 12.0 \text{moles}$$
 $N_2(g) + 3H_2(g) \leftrightarrows 2NH_3(g)$
 $\Delta G^{\circ}_{298} = -34 \text{ kJ mol}^{-1}$
 -34kJ
 ΔG_{298}
 $\Delta G_{298} = \frac{12.0 (-34)}{3} = -136 \text{ kJ}$

Multiple Choice

- Which of the following is true of a reaction that is spontaneous at <u>higher</u> temperatures?
 - [-A-] ΔS° and ΔH° are both negative
 - [-B-] ΔS° and ΔH° are both positive
 - [-C-] ΔS° is negative and ΔH° is positive
 - [-D-] ΔS° is positive and ΔH° is negative
 - [-E-] ΔS° and ΔH° are both equal to zero
- When solid NH₄SCN is mixed with solid Ba(OH)₂ in a closed container, the temperature drops and a gas is produced. Which of the following indicates the correct signs for ΔG , ΔH and ΔS for the process?

	ΔG	ΔH	ΔS
[-A-]	-	-	-
[-B-]	-	+	-
[-C-]	-	+	+
[-D-]	+	-	+
[-E-]	+	-	-

A gas is produced from solids \Rightarrow entropy increased $\Rightarrow \Delta S$ is positive Temperature drops \Rightarrow reaction is endothermic $\Rightarrow \Delta H$ is positive

When a solid sample of NaNO₃ is added to a cup of water, the temperature of the resulting solution 3. decreases. Which of the following must be true?

	ΔG	ΔH	ΔS
[-A-]	-	-	-
[-B-]	-	+	-
[-C-]	-	+	+
[-D-]	+	-	+
[-E-]	+	-	-

Sodium nitrate dissolves \Rightarrow reaction is spontaneous $\Rightarrow \Delta G$ negative

Temperature decreases \Rightarrow reaction is endothermic \Rightarrow enthalpy must be positive

Products are aqueous \Rightarrow entropy increased $\Rightarrow \Delta S$ is positive

5. $X(s) \leftrightarrow X(1)$

Which of the following is true for any substance undergoing the process represented above at its normal melting point?

- [-A-] $\Delta S < 0$
- [-B-] $\Delta H = 0$
- [-C-] $\Delta H = T \Delta G$
- [-D-] $T\Delta S = 0$
- [-E-] $\Delta \mathbf{H} = \mathbf{T} \Delta \mathbf{S}$
- 6. For a certain reaction, the standard free energy is -70.0kJ at 100K and -40.0Kj at 200 K. For this reaction
 - [-A-] $\Delta H > 0$; $\Delta S < 0$
 - [-B-] $\Delta \mathbf{H} < \mathbf{0}$; $\Delta \mathbf{S} < \mathbf{0}$
 - [-C-] $\Delta H > 0$; $\Delta S > 0$
 - [-D-] $\Delta H < 0$; $\Delta S < 0$

Sample Questions

SQ1 Define a spontaneous process?

A process is said to be spontaneous if it occurs without external or outside interference.

SQ2 What are the driving forces for spontaneous processes?

minimizing energy and maximizing randomness

- **SQ** Define entropy. It is a thermodynamic function that measures randomness or disorder.
- **SQ4** State the second law of thermodynamics.

The second law of thermodynamics states that in any spontaneous process there is always an increase in the entropy of the universe.

SQ5 When will water have higher entropy, at 25°C or at 80°C?

At 80°C, water will have greater entropy. Entropy increases with an increase in temperature.