

A-LEVEL CHEMISTRY

ASSESSMENT POINT 1

PAPER 1

(TOPICS 10 and 11)

Answer all questions

Max 80 marks

Name	~exxix
Mark	///80% Grade

1. This question is about bond dissociation enthalpies and their use in the calculation of enthalpy changes.

(a)	Define bond dissociation enthalpy as applied to chlorine.	
		(2)
(b)	Explain why the enthalpy of atomisation of chlorine is exactly half the bond dissociation enthalpy of chlorine.	(2)
		(1)

(c)	The bond	dissociation enthalpy for chlorine is +242 kJ mol 1 and that
	for fluorine	e is +158 kJ mol 1. The standard enthalpy of formation of
	CIF(g) is	56 kJ mol ₁.

(i)	Write an equation, including state symbols, for the reaction that has an enthalpy change equal to the standard enthalpy of formation of gaseous CIF	
		(1)
(ii)	Calculate a value for the bond enthalpy of the CI – F bond.	
		(2)
(iii)	Calculate the enthalpy of formation of gaseous chlorine trifluoride, CIF ₃ (g). Use the bond enthalpy value that you obtained in part (c)(ii).	
4	If you have been unable to obtain an answer to part (c)(ii), you may assume that the CI – F bond enthalpy is +223 kJ mol 1. This is not the correct value.)	

			(3)
	(iv)	Explain why the enthalpy of formation of CIF ₃ (g) that you calculated in part (c)(iii) is likely to be different from a data book value.	
			(1)
(d)		gest why a value for the Na – Cl bond enthalpy is not found in any book.	
			(1) arks)

2. Ammonia can be manufactured by the Haber Process.

The equation for the reaction that occurs is shown below.

$$N_2(g) + 3H_2(g)$$
 $2NH_3(g)$

(a) The table below contains some bond enthalpy data.

	N N	H–H	N–H
Mean bond enthalpy / kJ mol-1	944	436	388

(i) Use data from the table to calculate a value for the enthalpy of formation for one mole of ammonia.

H ₂ (g) N ₂ (g) NH ₃ (g) H ₃ (g) 193 The these data to calculate a value for the entropy change, with units the formation of one mole of ammonia from its elements.					
is –46 kJ mol-1. Suggest why your answer to part (a) (i) is different from this value. table below contains some entropy data. H ₂ (g) N ₂ (g) NH ₃ (g) these data to calculate a value for the entropy change, with units the formation of one mole of ammonia from its elements.					
is —46 kJ mol-1. Suggest why your answer to part (a) (i) is different from this value. Be table below contains some entropy data. H ₂ (g) N ₂ (g) NH ₃ (g) H ₃ (g) NH ₃ (g) The these data to calculate a value for the entropy change, with units the formation of one mole of ammonia from its elements.					
is —46 kJ mol-1. Suggest why your answer to part (a) (i) is different from this value. et able below contains some entropy data. H ₂ (g) N ₂ (g) NH ₃ (g) Et these data to calculate a value for the entropy change, with units the formation of one mole of ammonia from its elements.					
is —46 kJ mol-1. Suggest why your answer to part (a) (i) is different from this value. et able below contains some entropy data. H ₂ (g) N ₂ (g) NH ₃ (g) et these data to calculate a value for the entropy change, with units the formation of one mole of ammonia from its elements.					
is —46 kJ mol-1. Suggest why your answer to part (a) (i) is different from this value. et able below contains some entropy data. H ₂ (g) N ₂ (g) NH ₃ (g) et these data to calculate a value for the entropy change, with units the formation of one mole of ammonia from its elements.					
is —46 kJ mol-1. Suggest why your answer to part (a) (i) is different from this value. Be table below contains some entropy data. H ₂ (g) N ₂ (g) NH ₃ (g) H ₃ (g) NH ₃ (g) The these data to calculate a value for the entropy change, with units the formation of one mole of ammonia from its elements.					
is –46 kJ mol-1. Suggest why your answer to part (a) (i) is different from this value. e table below contains some entropy data. H₂(g) N₂(g) NH₃(g) E these data to calculate a value for the entropy change, with units the formation of one mole of ammonia from its elements.					2
is46 kJ mol-¹. Suggest why your answer to part (a) (i) is different from this value. e table below contains some entropy data. H₂(g) N₂(g) NH₃(g) E these data to calculate a value for the entropy change, with units the formation of one mole of ammonia from its elements.				Ċ),,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
130	is –46 kJ mol-₁. Suggest why your a		^<	,	
H ₂ (g) N ₂ (g) NH ₃ (g) e these data to calculate a value for the entropy change, with units the formation of one mole of ammonia from its elements.					
H ₂ (g) N ₂ (g) NH ₃ (g) e these data to calculate a value for the entropy change, with units the formation of one mole of ammonia from its elements.					
e these data to calculate a value for the entropy change, with units the formation of one mole of ammonia from its elements.	table below contains	s some entre	ору аата.		
e these data to calculate a value for the entropy change, with units the formation of one mole of ammonia from its elements.	Win.	H ₂ (g)	N ₂ (g)	NH₃(g)	
the formation of one mole of ammonia from its elements.	S-/JK-1 mol-1	131	192	193	
	he formation of one r	mole of amn	nonia from	its element	S.

(b)

(3)		
	The synthesis of ammonia is usually carried out at about 800 K.	(c)
this	 (i) Use the H value of -46 kJ mol⁻¹ and your answer from part (b) to calculate a value for G, with units, for the synthesis at this temperature. (If you have been unable to obtain an answer to part (b), you may assume that the entropy change is -112 J K⁻¹ mol -¹. This is not the correct answer.) 	
(3)		
n the	(ii) Use the value of G that you have obtained to comment on the feasibility of the reaction at 800 K.	
(1) tal 11 marks)	(Total 11	

3. When a mixture of 0.345 mol of PCl₃ and 0.268 mol of Cl₂ was heated in a vessel of fixed volume to a constant temperature, the following reaction

reached equilibrium.

PCl₃(g)	+	Cl ₂ (g)	PCI₅(g)	ΔH	= -93 kJ mol

At equilibrium, 0.166 mol of PCI₅ had been formed and the total pressure was 225 kPa.

(a) (i) Calculate the number of moles of PCl₃ and of Cl₂ in the equilibrium mixture.

Moles of PCI3

Moles of

(ii) Calculate the total number of moles of gas in the equilibrium mixture.

(b) Calculate the mole fraction and the partial pressure of PCI₃ in the equilibrium mixture.

(c) (i) Write an expression for the equilibrium constant, K_p , for this equilibrium.

.....

(3)

(3)

		(ii)	The partial pressures of Cl_2 and PCl_5 in the equilibrium mixture were 51.3 kPa and 83.6 kPa, respectively, and the total pressure remained at 225 kPa. Calculate the value of \mathcal{K}_5 at this temperature and state its units.	
				(4)
	(4)	Stat	a the affect on the male fraction of DCL in the equilibrium mixture if	(4)
	(d)		e the effect on the mole fraction of PCI ₃ in the equilibrium mixture if	
		(i)	the volume of the vessel were to be increased at a constant temperature,	
		(ii)	the temperature were to be increased at constant volume.	
			(Total 12 m	(2) arks)
4.	(a)	Define	e the term electron affinity for chlorine.	
		•••••		
				
			····	(2)
				(2)

wining the dark title of the confinence of the c

(b) Complete this Born Haber cycle for magnesium chloride by giving the missing species on the dotted lines. Include state symbols where appropriate.

The energy levels are **not** drawn to scale.

(c) Table 1 contains some enthalpy data.

Table 1

	Enthalpy change / kJ mol ¹
Enthalpy of atomisation of magnesium	+150
Enthalpy of atomisation of chlorine	+121
First ionisation energy of magnesium	+736
Second ionisation energy of magnesium	- +1450
Enthalpy of formation of magnesium chloride	642

whatsapp: Fahad Hameed +92 323 509 4443, email: megalecture@gmail.com

Lattice enthalpy of formation of magnesium 2493 chloride

Use your Born Haber cycle from part (b) and data from Table 1 to calculate a value for the electron affinity of chlorine.
~ ecx jix
The continue

(d) **Table 2** contains some more enthalpy data.

Table 2

	Enthalpy change / kJ mol ¹
Enthalpy of hydration of Mg ²⁺ ions	
Enthalpy of hydration of Na+ ions	
Enthalpy of hydration of CI ions	364

(i)	Explain why there is a difference between the hydration enthalpies of the magnesium and sodium ions.	
		(0)
		(2)
(ii)	Use data from Table 1 and Table 2 to calculate a value for the enthalpy change when one mole of magnesium chloride dissolves in water.	

.....

(2) (Total 15 marks)

wining the dark the country of the c

5.	When potassium nitrate (KNO ₃) dissolves in water the value of the enthalpy change $H = +34.9 \text{ kJ mol}^{-1}$ and the value of the entropy change $S = +117 \text{ J K}^{-1}$ mol ⁻¹ .				
	(a)	Write an equation, including state symbols, for the process that occurs when potassium nitrate dissolves in water.			
			(1)		
	(b)	Suggest why the entropy change for this process is positive.			
			(1)		
	(c)	Calculate the temperature at which the free-energy change, <i>G</i> , for this process is zero.			
			(3)		
	(d)	(i) Deduce what happens to the value of <i>G</i> when potassium nitrate dissolves in water at a temperature lower than your answer to part (c).			

		(1)
(ii)	What does this new value of G suggest about the dissolving of potassium nitrate at this lower temperature?	
	(Total 7 m	(1) arks)
	Total 7 m. The object of the control	

6. Hydrogen can be manufactured from the reaction of steam with methane.

$$CH_4(g) + H_2O(g)$$
 $CO(g) + 3H_2(g)$

(a) The table contains some enthalpy of formation and entropy data.

Substance	H , KJ mol 1	S / J K ¹ mol ¹
CH₄(g)	_ 75	186
H₂O(g)	_ 	189
CO(g)	111	198
H ₂ (g)	-0	131
CO ₂ (g)	394	214

(i)

(ii)

(2)
(2)

wining the dark the confinence of the confinence

The temperature used for this manufacture of hydrogen is usually about 1300 K. Suggest one reason, other than changing the position of equilibrium, why this temperature is used rather than the value that you calculated in part (b). Hydrogen can also be obtained by reaction of carbon monoxide with steam. CO(g) + H ₂ O(g) CO ₂ (g) + H ₂ (g) H = 41 kJ mol ¹ , S = 42 J K ¹ mol ¹ (i) Explain, using a calculation, why this reaction should not occur at 1300 K.	the t	temperature above which this reaction is feasible.
The temperature used for this manufacture of hydrogen is usually about 1300 K. Suggest one reason, other than changing the position of equilibrium, why this temperature is used rather than the value that you calculated in part (b). Hydrogen can also be obtained by reaction of carbon monoxide with steam. CO(g) + H ₂ O(g) CO ₂ (g) + H ₂ (g) H = 41 kJ mol ¹, S = 42 J K ¹ mol ¹ (i) Explain, using a calculation, why this reaction should not occur		
The temperature used for this manufacture of hydrogen is usually about 1300 K. Suggest one reason, other than changing the position of equilibrium, why this temperature is used rather than the value that you calculated in part (b). Hydrogen can also be obtained by reaction of carbon monoxide with steam. CO(g) + H ₂ O(g) CO ₂ (g) + H ₂ (g) H = 41 kJ mol ¹, S = 42 J K ¹ mol ¹ (i) Explain, using a calculation, why this reaction should not occur	•••••	
The temperature used for this manufacture of hydrogen is usually about 1300 K. Suggest one reason, other than changing the position of equilibrium, why this temperature is used rather than the value that you calculated in part (b). Hydrogen can also be obtained by reaction of carbon monoxide with steam. CO(g) + H ₂ O(g) CO ₂ (g) + H ₂ (g) H = 41 kJ mol ¹, S = 42 J K ¹ mol ¹ (i) Explain, using a calculation, why this reaction should not occur		
The temperature used for this manufacture of hydrogen is usually about 1300 K. Suggest one reason, other than changing the position of equilibrium, why this temperature is used rather than the value that you calculated in part (b). Hydrogen can also be obtained by reaction of carbon monoxide with steam. CO(g) + H ₂ O(g) CO ₂ (g) + H ₂ (g) H = 41 kJ mol ¹ , S = 42 J K ¹ mol ¹ (i) Explain, using a calculation, why this reaction should not occur	•••••	
The temperature used for this manufacture of hydrogen is usually about 1300 K. Suggest one reason, other than changing the position of equilibrium, why this temperature is used rather than the value that you calculated in part (b). Hydrogen can also be obtained by reaction of carbon monoxide with steam. CO(g) + H ₂ O(g) CO ₂ (g) + H ₂ (g) H = 41 kJ mol ¹ , S = 42 J K ¹ mol ¹ (i) Explain, using a calculation, why this reaction should not occur		
The temperature used for this manufacture of hydrogen is usually about 1300 K. Suggest one reason, other than changing the position of equilibrium, why this temperature is used rather than the value that you calculated in part (b). Hydrogen can also be obtained by reaction of carbon monoxide with steam. CO(g) + H ₂ O(g) CO ₂ (g) + H ₂ (g) H = 41 kJ mol ¹, S = 42 J K ¹ mol ¹ (i) Explain, using a calculation, why this reaction should not occur		···
The temperature used for this manufacture of hydrogen is usually about 1300 K. Suggest one reason, other than changing the position of equilibrium, why this temperature is used rather than the value that you calculated in part (b). Hydrogen can also be obtained by reaction of carbon monoxide with steam. CO(g) + H ₂ O(g) CO ₂ (g) + H ₂ (g) H = 41 kJ mol ¹, S = 42 J K ¹ mol ¹ (i) Explain, using a calculation, why this reaction should not occur		
The temperature used for this manufacture of hydrogen is usually about 1300 K. Suggest one reason, other than changing the position of equilibrium, why this temperature is used rather than the value that you calculated in part (b). Hydrogen can also be obtained by reaction of carbon monoxide with steam. CO(g) + H ₂ O(g) CO ₂ (g) + H ₂ (g) $H = 41 \text{ kJ mol }^1$, $S = 42 \text{ J K}^1 \text{ mol }^1$ (i) Explain, using a calculation, why this reaction should not occur		···
The temperature used for this manufacture of hydrogen is usually about 1300 K. Suggest one reason, other than changing the position of equilibrium, why this temperature is used rather than the value that you calculated in part (b). Hydrogen can also be obtained by reaction of carbon monoxide with steam. CO(g) + H ₂ O(g) CO ₂ (g) + H ₂ (g) $H = 41 \text{ kJ mol }^1$, $S = 42 \text{ J K}^1 \text{ mol }^1$ (i) Explain, using a calculation, why this reaction should not occur		
The temperature used for this manufacture of hydrogen is usually about 1300 K. Suggest one reason, other than changing the position of equilibrium, why this temperature is used rather than the value that you calculated in part (b). Hydrogen can also be obtained by reaction of carbon monoxide with steam. CO(g) + H ₂ O(g) CO ₂ (g) + H ₂ (g) H = 41 kJ mol ¹ , S = 42 J K ¹ mol ¹ (i) Explain, using a calculation, why this reaction should not occur	•••••	
The temperature used for this manufacture of hydrogen is usually about 1300 K. Suggest one reason, other than changing the position of equilibrium, why this temperature is used rather than the value that you calculated in part (b). Hydrogen can also be obtained by reaction of carbon monoxide with steam. CO(g) + H ₂ O(g) CO ₂ (g) + H ₂ (g) H = 41 kJ mol ¹ , S = 42 J K ¹ mol ¹ (i) Explain, using a calculation, why this reaction should not occur		
about 1300 K. Suggest one reason, other than changing the position of equilibrium, why this temperature is used rather than the value that you calculated in part (b). Hydrogen can also be obtained by reaction of carbon monoxide with steam. CO(g) + H ₂ O(g) CO ₂ (g) + H ₂ (g) H 41 kJ mol ¹ , S = 42 J K ¹ mol ¹ (i) Explain, using a calculation, why this reaction should not occur	•••••	
Hydrogen can also be obtained by reaction of carbon monoxide with steam. CO(g) + $H_2O(g)$	why	this temperature is used rather than the value that you calculated
Hydrogen can also be obtained by reaction of carbon monoxide with steam. CO(g) + $H_2O(g)$	why	this temperature is used rather than the value that you calculated
steam. $CO(g) + H_2O(g)$ $CO_2(g) + H_2(g)$ CO_2	why	this temperature is used rather than the value that you calculated
steam. $CO(g) + H_2O(g)$ $CO_2(g) + H_2(g)$ CO_2	why in pa	this temperature is used rather than the value that you calculated art (b).
42 J K ¹ mol ¹ (i) Explain, using a calculation, why this reaction should not occur	why in pa	this temperature is used rather than the value that you calculated art (b).
	why in pa	this temperature is used rather than the value that you calculated art (b) rogen can also be obtained by reaction of carbon monoxide with
	why in pa	this temperature is used rather than the value that you calculated art (b). rogen can also be obtained by reaction of carbon monoxide with $\frac{1}{2}$ and $\frac{1}{2}$
	why in pa	this temperature is used rather than the value that you calculated art (b). rogen can also be obtained by reaction of carbon monoxide with $\frac{1}{2}$ and $\frac{1}{2}$
	Hyd stea CO(42 J	this temperature is used rather than the value that you calculated art (b). rogen can also be obtained by reaction of carbon monoxide with $\frac{1}{2}$ and $\frac{1}{2}$
	Hyd stea CO(42 J	this temperature is used rather than the value that you calculated art (b). rogen can also be obtained by reaction of carbon monoxide with $\frac{1}{2}$ and $\frac{1}{2}$

	(ii)	Explain how the conditions for the reaction could be changed to allow this reaction to take place.
		7,0
		(2)
		(Total 15 marks)
		The Ore
Con	sider th	he following process that epresents the melting of ee
	H₂O	$H_2O(I)$ $H_0 = 46.03 \text{ kJ mol}^{-1}, S_0 = +22.1 \text{ J K}^{-1} \text{ mol}^{-1}$
(a)	State	e the meaning of the symbol \circ in H° .
		Δ
		(1)
(b)	Use	your knowledge of bonding to explain why H_0 is positive for this

(b) process.

7.

	Δ	(2)
(c)	Calculate the temperature at which $G^{\circ} = 0$ for this process. Show your working.	()
		(3)
(d)	The freezing of water is an exothermic process. Give one reason why the temperature of a sample of water can stay at a constant value of 0 °C when it freezes.	(-,
		(1)
(e)	Pure ice can look pale blue when illuminated by white light. Suggest an explanation for this observation.	(1)

• • •	
MEGA	LECTURE

 	 	 •••••	
 	 	 •••••	
			2
		/Total 0 mark	_

wind the sale country.