

A LEVEL CHEMISTRY

TOPIC 10 -THERMODYNAMICS

TEST

Answer all questions

Max 50 marks

Name	COLU
Mark	/50% Grade

1.

White Wedge

2. Calcium fluoride occurs naturally as the mineral fluorite, a very hard crystalline solid that is almost insoluble in water and is used as a gemstone.

Tables 1 and **2** contain thermodynamic data.

Table 1

Process →	H⁻ / kJ mol-¹
$\overrightarrow{Ca(s)}$ $Ca(g)$	+193
Ca(g) → Ca _* (g) + e-	+590
$Ca_{1}(g)$ $\overrightarrow{C}a_{2+}(g) + e_{-}$	+1150
$F_2(g) \xrightarrow{\rightarrow} 2F(g)$	+158
F(g) + e- F-(g)	-348

Table 2

Name of enthalpy change	<i>H</i> ⁻ / kJ mol₁
Enthalpy of lattice dissociation for calcium fluoride	+2602
Enthalpy of lattice dissociation for calcium chloride	+2237
Enthalpy of hydration for F- ions	-506
Enthalpy of hydration for CI- ions	-364
Enthalpy of hydration for Ca2+ ions	-1650

(a)	Write an equation, including state symbols, for the process that occurs
	when the calcium fluoride lattice dissociates and for which the enthalpy
	change is equal to the lattice enthalpy.

(1)

(b)

(c)

(i)	Define the term standard enthalpy of formation.	
	······	
		(3)
(ii)	Write an equation, including state symbols, for the process that has an enthalpy change equal to the standard enthalpy of formation of calcium fluoride.	
		(1)
(iii)	Use data from the Tables 1 and 2 to calculate the standard enthalpy of formation for calcum fluoride.	
	~ 0	
	.0.0	
4		
		(2)
		(3)
	ain why the enthalpy of lattice dissociation for calcium fluoride is ter than that for calcium chloride.	

10000	
	(2)
	ν-,

(d) Calcium chloride dissolves in water. After a certain amount has dissolved, a saturated solution is formed and the following equilibrium is established.

 $CaCl_2(s)$ $Ca^{2+}(aq) + 2Cl-(aq)$

(i)	Using data from Table 2 , calculate the enthalpy change for this reaction.	
	×,>,×	
		(2)
(ii)	Predict whether raising the temperature will increase, decrease or have no effect or, the amount of solid calcium chloride that can dissolve in a fixed mass of water. Explain your prediction. (If you have been unable to obtain an answer to part (d) (i), you may assume that the enthalpy change = -60 kJ mol-1. This is not the correct answer.) Effect on amount of solid that can dissolve	
	Explanation	

(3) (Total 15 marks) 2. (a) A Born–Haber cycle for the formation of calcium sulphide is shown below. The cycle includes enthalpy changes for all steps except step **G**. (The cycle is not drawn to scale.)

(i) Give the full electronic configuration of the ion $S_{\mbox{\tiny 2-}}$

(ii) Suggest why step **F** is an endothermic process.

.....

(iii) Name the enthalpy changes in steps \boldsymbol{B} and $\boldsymbol{D}.$

Step **B**

	Step	D	
(iv)	Expla step	ain why the enthalpy change for step D is larger than that for C .	
(v)		the data shown in the cycle to calculate a value for the	
	entha	alpy change for step G .	
			(9)
for th	e latti	orn–Haber cycle, a value of –905 kJ mol-1 was determined ce enthalpy of silver chloride. A value for the lattice enthalpy loride using the ionic model was –833 kJ mol-1.	
	ain wh e value	at a scientist would be able to deduce from a comparison of es.	
			(3)

(b)

white the date of the contract of the contract

(c) Some endothermic reactions occur spontaneously at room temperature. Some exothermic reactions do not occur if the reactants are heated together to a very high temperature.

In order to explain the following observations, another factor, the entropy change, S, must be considered. The equation which relates S to H is given below.

	G = H - T S
(i)	Explain why the following reaction occurs at room temperature even though the reaction is endothermic.
	$NaHCO_3(aq) + HCI(aq)$ $NaCI(aq) + H_2O(I) + CO_2(g)$
(ii)	Explain why the following reaction does not occur at very high temperatures even though the reaction is exothermic.
	$2SO_2(g) + O_2(g) = 2SO_3(g)$
	(6) (Total 18 marks)

10

wind the sale critice.

3. Methanol can be regarded as a carbon-neutral fuel because it can be synthesised from carbon dioxide as shown in the equation below.

$$CO_2(g) + 3H_2(g)$$
 $CH_3OH(g) + H_2O(g)$

Standard enthalpy of formation and standard entropy data for the starting materials and products are shown in the following table.

	CO ₂ (g)	H ₂ (g)	CH₃OH(g)	H₂O(g)
H _i / kJ mol-1	-394	0	-201	-242
S / J K-1 mol-1	214	131	238	189

(a)	Calculate the standard enthalpy change for this reaction.	
		(0)
(b)	Calculate the standard entropy change for this reaction.	(3)

(3)

winty the dark title.

	your answers to parts (a) and (b) to explain why this reaction is feasible at high temperatures.
Calc	culate the temperature at which the reaction becomes feasible.
	gest why the industrial process is carried out at a higher perature than you have calculated.
assı	bu have been unable to calculate values for H and S you may take they are -61 kJ mol- $^{-1}$ and -205 J K- $^{-1}$ mol- $^{-1}$ respectively. se are not the correct values.)
•••••	

(d) Write an equation for the complete combustion of methanol. Use your

(6)

equation to explain why the combustion reaction in the gas phase is

•
1111111
()
(4) (Total 16 marks)
$\mathcal{O}_{\mathcal{I}}$ (4)
(Total 16 marks)
_ V
one of the following statements is not correct?
The first ionisation energy of iron is greater than its second ionisation

4. Which o

feasible at all temperatures.

- Α energy.
- The magnitude of the lattice enthalpy of magnesium oxide is greater В than that of harium oxide.
- C The oxidation state of iron in $[Fe(CN)_6]^3$ is greater than the oxidation state of copper in [CuCl₂]
- D The boiling point of C₃H₈ is lower than that of CH₃CH₂OH

(Total 1 mark)