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Key to symbols in this book

@ This symbol means that you may want to discuss a point with your teacher. If
you are working on your own there are answers in the back of the book. It is
important, however, that you have a go at answering the questions before looking
up the answers if you are to understand the mathematics fully.

Q This symbol invites you to join in a discussion about proof. The answers to these
questions are given in the back of the book.

A This is a warning sign. It is used where a common mistake, paisunderstanding or
tricky point is being described. &

This is the ICT icon. It indicates where you could phic calculator or a
computer. Graphic calculators and computers arempermitted in any of the

examinations for the Cambridge International AS and A Level Mathematics 9709

syllabus, however, so these activities are op 1.

() This symbol and a dotted line dowr% ht-hand side of the page indicate

material that you are likely to h efore. You need to be familiar with the
material before you move o q) lop it further.
ow

€ This symbol and a dotte
material which is be e syllabus for the unit but which is included for

n the right-hand side of the page indicate

completeness.

>
(@0)
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Introduction

This is part of a series of books for the University of Cambridge International
Examinations syllabus for Cambridge International AS and A Level Mathematics
9709. It follows on from Pure Mathematics 1 and completes the pure mathematics
required for AS and A level. The series also contains a book for each of mechanics
and statistics.

These books are based on the highly successful series for the Mathematics in
Education and Industry (MEI) syllabus in the UK but they have been redesigned
for Cambridge international students; where appropriate, new material has been
written and the exercises contain many past Cambridge examination questions.
An overview of the units making up the Cambridge international syllabus is given
in the diagram on the next page.

Throughout the series the emphasis is on understanding the mathematics
as well as routine calculations. The various exercises provide plenty of scope
for practising basic techniques; they also contain many typical examination
questions.

An important feature of this series is the electronic support. There is an
accompanying disc containing two types of Personal Tutor presentation:
examination-style questions, in which the solutions are written out, step by step,
with an accompanying verbal explanation, and test-yourself questions; these are
multiple-choice with explanations of the mistakes that lead to the wrong answers
as well as full solutions for the correct ones. In addition, extensive online support
is available via the MEI website, www.mei.org.uk.

The books are written on the assumption that students have covered and
understood the work in the Cambridge IGCSE® syllabus. However, some

of the early material is designed to provide an overlap and this is designated
‘Background’. There are also places where the books show how the ideas can be
taken further or where fundamental underpinning work is explored and such
work is marked as ‘Extension’.

The original MEI author team would like to thank Sophie Goldie who has carried
out the extensive task of presenting their work in a suitable form for Cambridge
international students and for her many original contributions. They would

also like to thank University of Cambridge International Examinations for their
detailed advice in preparing the books and for permission to use many past
examination questions.

Roger Porkess
Series Editor

Wwww. yout ube. coml negal ect ure Pages8of3ss
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Algebra

No, it [1729] is a very interesting number. It is the smallest number
expressible as the sum of two cubes in two different ways.
Srinivasa Ramanujan

A brilliant mathematician, Ramanujan was largely self-taught, being too poor to
afford a university education. He left India at the age of 26 to work with G.H. Hardy
in Cambridge on number theory, but fell ill in the English climate and died six years
later in 1920. On one occasion when Hardy visited him in hospital, Ramanujan
asked about the registration number of the taxi he came in. Fiqrdy replied that it was
1729, an uninteresting number; Ramanujan’s instant re 1s quoted above.

+0.08 -

~0.08 1

The photograph shows the Tamar Railway Bridge. The spans of this bridge,
drawn to the same horizontal and vertical scales, are illustrated on the graph as
two curves, one green, the other blue.

€ How would you set about trying to fit equations to these two curves?

Wwww. yout ube. com negal ect ure Pagellofsss
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You will already have met quadratic expressions, like x? — 5x+ 6, and solved
quadratic equations, such as x> — 5x+ 6 = 0. Quadratic expressions have the form
ax*> + bx+ c where xis a variable, a, b and c are constants and a is not equal to
zero. This work is covered in Pure Mathematics 1 Chapter 1.

An expression of the form ax® + bx? + cx+ d, which includes a term in x3, is
called a cubic in x. Examples of cubic expressions are

2x3 +3x2—2x+ 11, 3y°—1 and 473 -2z

Similarly a quartic expression in x, like x* — 4x3 + 6x? — 4x+ 1, contains a term in
x% a quintic expression contains a term in x° and so on.

All these expressions are called polynomials. The order of a polynomial is the
highest power of the variable it contains. So a quadratic is a polynomial of

order 2, a cubic is a polynomial of order 3 and 3x% + 5x* + 6x is a polynomial of
order 8 (an octic).

. . . . . 1
Notice that a polynomial does not contain terms involving \/;, o etc. Apart from
the constant term, all the others are multiples of x raised to a positive integer power.

Operations with polynomials

EXAMPLE 1.1

WWW. yout ube. conl megal ect ur e

Addition of polynomials

Polynomials are added by adding like terms, for example, you add the coefficients
of x? together (i.e. the numbers multiplying x?), the coefficients of x* together,
the coefficients of x together and the numbers together. You may find it easiest to
set this out in columns.

Add (5x* —3x% — 2x) to (7x* + 5x° + 3x% = 2).

SOLUTION
5x4 —3x3 —2x
+ (7x* +5x3 +3x? -2)
12x* +2x3 +3x2 —2x -2
Note

This may alternatively be set out as follows:

(5Bx*—3x3—2x)+ (Ix*+5x3+3x2—2)=(6+7)x*+ (-3+5)x3+3x2—2x—2
=12x*+2x3+3x2—2x—2

Subtraction of polynomials

Similarly polynomials are subtracted by subtracting like terms.

1
N

sjeiwouAjod yiim suonesadg
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EXAMPLE 1.2 Simplify (5x* — 3x° — 2x) — (7x* + 52 + 322 — 2).

P2

m SOLUTION
4

5x —3x3 —2x
£ — (7 +5:3 +322 -2)
[]
3 2 82 -3¢ —2x +2

A Be careful of the signs when subtracting. You may find it easier to change the
signs on the bottom line and then go on as if you were adding.

Note @

This, too, may be set out alternatively, as follows: g)o

(5x* =33 —2x) — (IX* + 53+ 3x* —2) = (5 — 7)x* + (-3 —5)x* — 3x* — 2x + 2
=—2>J®<3‘— 3x2 —2x+2

() Multiplication of polynomialO

When you multiply two pol &s, you multiply each term of the one by each
term of the other, and all Iting terms are added. Remember that when
you multiply powers of x¢{o)l add the indices: x° x x” = x!2.

EXAMPLE 1.3 Multiply (£° + beﬁy (2 —2x—4).

Arranging this in columns, so that it looks like an arithmetical long
ication calculation you get:

x° +3x -2
X xr —2x —4
Multiply top line by x? x© +3x° —2x2
Multiply top line by —2x —2x* —6x>  +4x
Multiply top line by —4 —4x3 -12x +8
Add x =2xt —x* -8x*  —8x +8

Note
Alternatively:

(XP+3x—2)x(x2—2x—4) = x3(x2—2x — 4) + 3x(x2 —2x — 4) — 2(x2 — 2x — 4)
=x5—2x*—4x34+3x3—6x2—12x —2x2+ 4x+8
=x5—2x*+ (—4+3)x3+(—6—2)x2+ (—12+ 4)x+ 8

I:| =x5—-2x*—x3—8x2—8x+8

Wwww. yout ube. com negal ect ure Pagel30f3s3
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Division of polynomials

Division of polynomials is usually set out rather like arithmetical long division.

Divide 2x° — 3x* + x— 6 by x— 2.

If the dividend is missing a term,
leave a blank space. For example,
write x* + 2x + 5 as x? +2x+5.

SOLUTION
Method Another way to write it is x> + 0x? + 2x + 5.
ethod 1
2x? Found by dividing 2x3 (the first term in
o 2) 23— 32 + x—6 2x3 — 3x2 4+ x — 6) by x (the first term in x — 2).
2x3 — 4o?

Now subtract 2x* — 4x? from 2x> — 3x2, bring down the next term (i.e. x) and
repeat the method above:

22 4+ x
x—2)2x3—3x2+x—6
2x3 — 4x?

x*—2x

Continuing gives:

This is the answer.
It is called the quotient.

2%*4+ x+3
x—2)2x3—3x2 + x-6
2x% — 4x?
X+ x
x?—2x The final remainder of
zero means that
3x—-6 x — 2 divides exactly
3x—6 into 2x3 — 3x% +x — 6.

0
Thus (2x°> = 3x2 + x—6) + (x—2) = (2x% + x+ 3).

Method 2

Alternatively this may be set out as follows if you know that there is no remainder.

The polynomial here must
be of order 2 because 2x3 + x
will give an x? term.

Let (2x* =3x>+x—6)+ (x—2)=ax*+ bx+¢
Multiplying both sides by (x— 2) gives

(2x3 = 3x*+ x—6) = (ax* + bx+ c)(x—2)

The identity sign is used
here to emphasise that this
is an identity and true for
all values of x.

Multiplying out the expression on the right

2% =3x2+x—6=ax’ + (b—2a)x*+ (c—2b)x—2c

1
N

sjeiwouAjod yiim suonesadg
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Algebra

Comparing coefficients of x>
2=a

Comparing coefficients of x>

-3=b-2a
-3=b—4
= b=1

Comparing coefficients of x

1=c-2b
l=c-2
= c=3
Checking the constant term @
—6 =—2c¢ (which agrees with ¢=3). O
So ax?*+bx+cis2x>+x+3 Q

Le. (2x3=3x2+x—6) + (x—2) =2x? @ 3.
Method 3

what sapp: +92 323 509 4443, enmil: negal ecture@mail . con

With practice you may be able Kd(:gsmethod ‘by inspection’. The steps in this

would be as follows. Q
(2x3=3x2+x—6) = (x @Zx )

)

Introducing +x gives +x?
for this product and so the
x? term is correct.

<
This product gives —2x and
~ _~ +x is on the left-hand side.
=(x—-2)2x*+x+3)
v

This +3x product then
gives the correct x term.
Check that the constant
term (—6) is correct.

So (2x® —=3x2+x—6) + (x—2)=2x>+ x4+ 3.

=(x-2)(2x*+x+3)
N—_

Needed to give the 2x3 term
when multiplied by the x.
This product gives —4x2.
Only —3x? is needed.

A quotient is the result of a division. So, in the example above the quotient is

2%+ x+ 3.

WWW. yout ube. cont megal ect ur e
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State the orders of the following polynomials.

1
N

(i) x>+3x2—4x (i) x!2 (i) 2 +6x2+ 3x7 — 8x°

Add (P +x2+3x—=2)to (x> —x2=3x—2).
Add (x* — x), 3x%+2x+1) and (x* + 3x> + 3x%2 + 3x).

Subtract (3x%+ 2x+ 1) from (x> + 5x2 + 7x + 8).

VL 9s12409x3g

Subtract (x> — 4x*> — 8x—9) from (x*> — 5x*> + 7x+9).

Subtract (x° — x* — 2x% — 2x%? + 4x— 4) from (x° + x* — 2x% — 2x* + 4x + 4).
Multiply (x> + 3x2 + 3x+ 1) by (x+1).

Multiply (x3 + 2x* — x— 2) by (x—2).

Multiply (x? + 2x— 3) by (x? — 2x—3).

Multiply (x"%+ x° + x3+ X"+ x0+ X+ x* + x> + x>+ x' + 1) by (x— 1).
Simplify (x> + 1)(x—1) — (x> = 1)(x— 1).

Simplify (x?+ 1)(x? +4) — (x> — 1)(x*> — 4).

Simplify (x+ 1)+ (x+3)? — 2(x+ 1)(x+ 3).

Simplify (x?+ 1)(x+3) — (x? +3)(x+ 1).

Simplify (x? — 2x+1)> — (x+ 1)*

Divide (x* — 3x% — x+ 3) by (x—1).

Find the quotient when (x® + x? — 6x) is divided by (x— 2).

Divide (2x® — x> — 5x+ 10) by (x+ 2).

Find the quotient when (x* + x? — 2) is divided by (x— 1).

Divide (2x* — 10x* + 3x— 15) by (x— 5).

Find the quotient when (x* + 5x + 6x% + 5x + 15) is divided by (x+ 3).
Divide (2x* + 5x° + 4x% + x) by (2x+ 1).

Find the quotient when (4x* + 4x> — x> + 7x — 4) is divided by (2x— 1).
Divide (2x* + 2x> + 5x% + 2x+ 3) by (x> + 1).

Find the quotient when (x* + 3x> — 8x% — 27x — 9) is divided by (x> —9).
Divide (x* + x> + 4x2 + 4x) by (x> + x).

Find the quotient when (2x* — 5x> — 16x? — 6x) is divided by (2x? + 3x).

Divide (x* +3x3+ x2=2) by (x2+ x+ 1).
Y

ER
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Solution of polynomial equations

EXAMPLE 1.5

WWW. yout ube. cont megal ect ur e

You have already met the formula
_ —b* NV - 4ac
2a
for the solution of the quadratic equation ax? + bx+ c=0.
Unfortunately there is no such simple formula for the solution of a cubic

equation, or indeed for any higher power polynomial equation. So you have to
use one (or more) of three possible methods.

e Spotting one or more roots.
e Finding where the graph of the expression cuts the x axis.

® A numerical method. @

Solve the equation 4x> — 8x*> — x+2=0. O
SOLUTION
Start by plotting the curve whose equati 4x3 8x? — x+ 2. (You may also

find it helpful at this stage to display 6 a graphic calculator or computer.)

x -1 0 r. 2 3
y -9 ,\J -3 0 35

\k
Q)(b'

(@ S0l

20 -
*
10 -
1

D ! I >

:/o " 3 x
,10_

Figure 1.1

Figure 1.1 shows that one root is x=2 and that there are two others. One is
between x=—1 and x =0 and the other is between x=0and x=1.

Page 17 of 353
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Try x= —%.

Substituting x = —% in y=4x>—8x?— x+ 2 gives
1 1
y=ax(=g)=8x —(-3)+2
y=0
So in fact the graph crosses the x axis at x= —% and this is a root also.
Similarly, substituting x=+J in y = 4x> — 8x” — x + 2 gives
y=4xg—8x;—142
y=0

and so the third root is x= %

The solution is x= —%, % or 2.

This example worked out nicely, but many equations do not have roots which are
whole numbers or simple fractions. In those cases you can find an approximate
answer by drawing a graph. To be more accurate, you will need to use a numerical
method, which will allow you to get progressively closer to the answer, homing in
on it. Such methods are covered in Chapter 6.

The factor theorem

The equation 4x® — 8x? — x+ 2 = 0 has roots that are whole numbers or fractions.
This means that it could, in fact, have been factorised.

453 —8x* —x+2=2x+1)2x—-1)(x—2)=0

Few polynomial equations can be factorised, but when one can, the solution
follows immediately.

Since 2x+ 1)(2x—1)(x—2)=0

1

it follows that either 2x+1=0 = «x 5

or 2x—1=0 = «x
or x—2=0 = «x

Il
RN

__11
and so x= 3> 5 Or 2.

This illustrates an important result, known as the factor theorem, which may be
stated as follows.

If (x— a) is a factor of the polynominal f(x), then f(a) = 0 and x= ais a root of the
equation f(x) = 0. Conversely if f(a) = 0, then (x— a) is a factor of f(x).

v
N

suonenba jeiwouAjod jo uonnjog

R
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Given that f(x) = x> — 6x*+ 11x—6:

(i) find £(0), (1), f(2), f(3) and f(4)

(ii) factorise x*> — 6x>+11x—6

(iii) solve the equation x°> — 6x*+ 11x—6=0

(iv) sketch the curve whose equation is f(x) = x> — 6x? + 11x— 6.

SOLUTION

i f(0) =0>-6x02+11X0-6=—6

f(3) =3°-6%x3*+11%x3-6=0
f(4) =43 —6x42+11x4-6=6

(i) Since f(1), f(2) and f(3) all equal 0, it follows t@ = 1), (x—2)and (x—3)
are all factors. This tells you that

B—6x?+11x—6=(x—1)(x— @—‘3) X constant

By checking the coefficient of tl@k) in x%, you can see that the constant
must be 1, and so

X3 —6x2+ llx—@xl)(x—Z)(x—?a)
(iii) x=1,2o0r3 \@

BN
S
&

f(x)

=Y

(=}
—_
S}
w

Figure 1.2

In the previous example, all three factors came out of the working, but this will
not always happen. If not, it is often possible to find one factor (or more) by
‘spotting’ it, or by sketching the curve. You can then make the job of searching
for further factors much easier by dividing the polynomial by the factor(s) you
have found: you will then be dealing with a lower order polynomial.
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EXAMPLE 1.7 Given that f(x) = x> — x? — 3x + 2:
(i) show that (x—2) is a factor

(i) solve the equation f(x) =0.

SOLUTION
(i) To show that (x—2) is a factor, it is necessary to show that f(2) = 0.

f(2)=23-22-3x2+2
=8-4-6+2
=0

Therefore (x—2) is a factor of x> — x2 — 3x+ 2.

(ii) Since (x—2) is a factor you divide f(x) by (x—2).

X2+ x—1
x—2)x3— x2—3x+2
x> —2x?

x? = 3x
x%—2x
-x+2
—-x+2
0

So f(x) = 0 becomes (x—2)(x*+x—1) =0,
= eitherx—2=0 or x*+x-1=0.

Using the quadratic formula on x* + x— 1 =0 gives

xz—li\/1—4><1><(—1)

2

_ 1445
2
=-1.618 or 0.618 (to3d.p.)

So the complete solution is x=-1.618, 0.618 or 2.

Spotting a root of a polynomial equation

Most polynomial equations do not have integer (or fraction) solutions. It is only
a few special cases that work out nicely.

To check whether an integer root exists for any equation, look at the constant
term. Decide what whole numbers divide into it and test them.

1
N
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EXAMPLE 1.8 Spot an integer root of the equation x°> — 3x? +2x— 6 =0.

SOLUTION

The constant term is —6 and this is divisible by -1, +1, =2, +2, =3, +3, —6 and +6.
So the only possible factors are (x £ 1), (x £ 2), (x+ 3) and (x % 6). This limits
the search somewhat.

f(1)=-6 No; f(-1)=-12  Noj;
f(2)=-6  No; f(-2)=-30 No;
f(3)=0 Yes; f(-3)=-66 Noj;
f(6)=114 No; f(-6)=-342 No.

x =3 is an integer root of the equation.

EXAMPLE 1.9 [s there an integer root of the equation x* — 3x* + 2x—©$
SOLUTION :J

The only possible factors are (x = 1) and (x@

f(1)=-5 No; f(— I)Z_HSNO’

f(5)=55 No; f(-5)=-2

There is no integer root. ()

The remainder t rem

Using the long@ n method, any polynomial can be divided by another

polynomia order, but sometimes there will be a remainder.
Look at > 2x2 = 3x—7) =+ (x—=2).

x*+4x+ 5
’x—2)x3+2x2—3x— 7

x3 — 2x? l

4x? — 3x

4x? — 8x
5 — 7 The quotient is
5x — 10 X%+ 4x + 5 and the

remainder is 3.

3
You can write this as
X +2x2=3x—7=(x—2)(x*+4x+5)+3

At this point it is convenient to call the polynomial x* + 2x? — 3x— 7 = f(x).
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So f(x) = (x=2)(x% + 4x+5) + 3. ®
Substituting x = 2 into both sides of @ gives f(2) = 3.
So f(2) is the remainder when f(x) is divided by (x—2).

This result can be generalised to give the remainder theorem.
It states that for a polynomial, f(x),

f(a) is the remainder when f(x) is divided by (x— a).

f(x) = (x—a)g(x) + f(a) (the remainder theorem)

Find the remainder when 2x* — 3x+ 5 is divided by x+ 1.

SOLUTION
The remainder is found by substituting x=—1 in 2x> — 3x+ 5.

2x (=12 =3x(-1)+5
=—2+3+5
=6

So the remainder is 6.

When x? — 6x+ a is divided by x — 3, the remainder is 2. Find the value of a.

SOLUTION
The remainder is found by substituting x= 3 in x> — 6x + a.

32_6X34+a=2

9—18+a=2
—9+a=2
a=11

When you are dividing by a linear expression any remainder will be a constant;
dividing by a quadratic expression may give a linear remainder.

A polynomial is divided by another of degree .

What can you say about the remainder?

1
N
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When dividing by polynomials of order 2 or more, the remainder is usually
found most easily by actually doing the long division.

EXAMPLE 1.12 Find the remainder when 2x* — 3x® + 4 is divided by x? + 1.
SOLUTION
2x? —3x -2
X +1) 2xt - 300 +4
2x* + 2x?
- 3x% — 2x?
- 3x° - 3x

—2x*+3x+4 @
— 2x? -2 O
3x+6 ()

The remainder is 3x + 6. .

¢
A\

A In a division such as the one in Exa 1.12, it is important to keep a separate

column for each power of x anc&i} means that sometimes it is necessary to leave
gaps, as in the example above, Inparithmetic, zeros are placed in the gaps. For
example, 2 thousand and@/spwritten 2003.

AN
N\

EXERCISE 1B 1 Given tha = x> +2x%2—9x—18:

0] @13), f(=2), f(-1), £(0), (1), £(2) and £(3)
(i) torise f(x)

iii) solve the equation f(x) =0

(iv) sketch the curve with the equation y = f(x).

The polynomial p(x) is given by p(x) = x> — 4x.

(i) Find the values of p(-3), p(-2), p(-1), p(0), p(1), p(2) and p(3).
(i) Factorise p(x).

(i) Solve the equation p(x) =0.
(iv) Sketch the curve with the equation y=p(x).

3 You are given that f(x) = x> — 19x + 30.

(i) Calculate f(0) and f(3). Hence write down a factor of f(x).
(ii) Find p and q such that f(x) = (x—2)(x* + px+ q).
(iii) Solve the equation x> — 19x+ 30 = 0.

(iv) Without further calculation draw a sketch of y = f(x).
[MEI]
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4 (i) Show that x— 3 is a factor of x> — 5x? — 2x + 24.
(ii) Solve the equation x* — 5x> — 2x+ 24 = 0. P2

(iii) Sketch the curve with the equation y= x> — 5x? — 2x+ 24. _

5 (i) Show that x=2 is a root of the equation x* — 5x? + 2x= 0 and write down

. m
another integer root. H
(ii) Find the other two roots of the equation x* — 5x% + 2x=0. g
(iii) Sketch the curve with the equation y= x* — 5x> + 2x. ;
6 (i) The polynomial p(x) = x* — 6x? + 9x+ k has a factor x — 4.
Find the value of k.
(ii) Find the other factors of the polynomial.
(i) Sketch the curve with the equation y = p(x).
7 The diagram shows the curve with "
the equation y= (x+ a)(x— b)?
where a and b are positive
integers. /\ .
(i) Write down the values of a . ' >
. -2 -1 0 1 2 X
and b, and also of ¢, given that
the curve crosses the y axis at
(0, ¢).
(ii) Solve the equation (x+ a)(x— b)? = c using the values of a, band ¢
you found in part (i).
8 The function f(x) is given by f(x) = x* — 3x? — 4 for real values of x.
(i) By treating f(x) as a quadratic in x?, factorise it in the form
(4.0 + 0.
(ii) Complete the factorisation as far as possible.
(iii) How many real roots has the equation f(x) = 02 What are they?
9 (i) Show that x— 2 is not a factor of 2x> + 5x* — 7x— 3.
(ii) Find the quotient and the remainder when 2x3 + 5x? — 7x — 3
is divided by x — 2.
10 The equation f(x) = x> — 4x? + x+ 6 = 0 has three integer roots.
(i) List the eight values of a for which it is sensible to check whether f(a) =0
and check each of them.
(ii) Solve f(x) =0.
11 Factorise, as far as possible, the following expressions.
(i) x°—x?—4x+4 given that (x— 1) is a factor.
(ii) x*>+ 1 given that (x+ 1) is a factor.
(i) x> + x— 10 given that (x— 2) is a factor.
(iv) x° + x? 4+ x+ 6 given that (x+ 2) is a factor.
. et s
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12

13

14

15

16

17

18

19

20

21
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(i) Show that neither x=1 nor x=—1 is a root of x* — 2x*> + 3x> — 8 = 0.
(ii) Find the quotient and the remainder when x* — 2x* + 3x? — 8 is divided by

(a) (x—1) (b) (x+1) (e) (x2-1).

When 2x3 + 3x% + kx— 6 is divided by x + 1 the remainder is 7.
Find the value of k.

When x3 + px? + p?x— 36 is divided by x — 3 the remainder is 21.
Find a possible value of p.

When x> + ax? + bx + 8 is divided by x — 3 the remainder is 2 and when it is
divided by x + 1 the remainder is 2.
Find a and b and hence obtain the remainder on dividing by x — 2.

When f(x) = 2x> + ax? + bx + 6 is divided by x— 1 there #gno remainder and
when f(x) is divided by x+ 1 the remainder is 10.
Find a and b and hence solve the equation f(x) = (

The cubic polynomial ax® + bx* — 3x — 2, wherg gland b are constants, is
denoted by p(x). It is given that (x— 1) and (x + 2) are factors of p(x).

(i) Find the values of a and b.

(ii) When a and b have these valubs, find the other linear factor of p(x).
[Cambridge InternatioraX’AS & A Level Mathematics 9709, Paper 2 Q4 June 2006]

The polynomial 2x* + 7x{+ gx+ b, where a and b are constants, is denoted by
p(x). It is given that (£#7]) 1s a factor of p(x), and that when p(x) is divided
by (x+2) the retqainder is 5. Find the values of a and b.

| Cymbridge International AS & A Level Mathematics 9709, Paper 2 Q4 June 2008]

The polyn&midl 2x° — x? + ax — 6, where a is a constant, is denoted by p(x).
It is giviad that(x + 2) is a factor of p(x).

(i) ®ind the value of a.
\ii), When a has this value, factorise p(x) completely.

[Cambridge International AS & A Level Mathematics 9709, Paper 2 Q2 November 2008]

The polynomial x* + ax? + bx + 6, where a and b are constants, is denoted by
p(x). It is given that (x—2) is a factor of p(x), and that when p(x) is divided
by (x— 1) the remainder is 4.

(i) Find the values of a and b.
(ii) When a and b have these values, find the other two linear factors of p(x).
[Cambridge International AS & A Level Mathematics 9709, Paper 2 Q6 June 2009]

The polynomial x* — 2x + a, where a is a constant, is denoted by p(x).
It is given that (x+ 2) is a factor of p(x).

(i) Find the value of a.
(ii) When a has this value, find the quadratic factor of p(x).
[Cambridge International AS & A Level Mathematics 9709, Paper 3 Q2 June 2007]

Page 25 of 353



what sapp: +92 323 509 4443, enmil: negal ecture@mail . con

The modulus function

1
N

Look at the graph of y = f(x), where f(x) = x.

YA
y=fx)=x g
3
-]
Qo
£
_ &
0 X g
a
g
Figure 1.3
The function f(x) is positive when x is positive and negative when x is negative.
Now look at the graph of y = g(x), where g(x) =|x|.
YA
y=gx) =k
0 g
Figure 1.4
The function g(x) is called the modulus of x. g(x) always takes the positive
numerical value of x. For example, when x=-2, g(x) =2, so g(x) is always
positive. The modulus is also called the magnitude of the quantity.
Another way of writing the modulus function g(x) is
g(x)=x forx=0
g(x) =—x for x < 0.
9 What is the value of g(3) and g(-3)?
What is the value of |3+ 3|,] 3—=31|,|3| +| 3|and |3 |+]|-3 |7
The graph of y = g(x) can be obtained from the graph of y = f(x) by replacing
values where f(x) is negative by the equivalent positive values. This is the
equivalent of reflecting that part of the line in the x axis. 17
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EXAMPLE 1.13 Sketch the graphs of the following on separate axes.

M y=1-x
(i) y=11-x]|

(i) y=2+|1—x]|

SOLUTION

(i) y=1-—xis the straight line through (0, 1) and (1, 0).

YA

Figure 1.5 @ N

(ii) y=|1-x]is obtained by reﬂecﬁé&e part of the line for x > 1 in the x axis.

1 y=[1-x

LY

o| 1

<
&
o

translation (g]

YA

3
y=2+1-x]

(1,2

Figure 1.7
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22 +]| 1 - x| is obtained from the previous graph by applying the
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Inequalities involving the modulus sign

1
N

You will often meet inequalities involving the modulus sign.

€ Look back at the graph of y=| x| in figure 1.4. g
3
How does this show that | x| < 2 is equivalent to —2 < x < 2? 3
e
£
7]
-
~ :
Here is a summary of some useful rules. a
s
Rule Example
lx|=]-x| 131=1-31
la—bl=b-al |8-5]=|5-8]=+3
lx|? = x? |-312=(-3)
lal=1bl < =0 [-3]=13] <& (-3)?=3?
Ix|<a & —-asx<a x|<3 & -3=<x=<3
[x|>a & x<-aorx>a x]|>3 & x<-3orx>3
EXAMPLE 1.14 Solve the following.
i [x+3] <4
i) [2x—1]>9

(iii) 5—|x—-2| >1

SOLUTION
(i |x+3|<4 S 4=x+3<4
& IT=sxs1
(i) |2x—1] >9 & 2x—-1<-9 or 2x-1>9
& 2x< -8 or 2x>10
& x<—4 or x>5
(iii) 5—|x=-2] >1 & 4>]|x-2]|
& | x-21<4
& 4 <x-2<4
& 2<x<6

Note

The solution to part (ii) represents two separate intervals on the number line, so

cannot be written as a single inequality.

o
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Express the inequality —2 < x < 6 in the form | x— a| < b, where aand b are to
be found.

SOLUTION

| x—al <b & —b<x—a<b
& a-b<x<a+b

Comparing this with —2 < x < 6 gives

a—b=-2
a+b=6.

Solving these simultaneously gives a=2, b=4,s0 | x—2| < 4.

\)

Solve 2x < |x—3]|. O
SOLUTION Q

It helps to sketch a graph of y=2xand y= @3?
1
\ y=2x
\Q ‘ y=| -3
&7

L g

=Y

ure 1.8

You can see that the graph of y=2xis below y=|x— 3| for x < c.

¢ is at the intersection
of the lines y = 2x and
y=—(x=3).

You can find the critical region by solving 2x < —(x—3).

2x < —(x—3)

2x <—x+3

3x <3
x<l1
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EXAMPLE 1.17 (i) Solve|2x—1]|=]|x-2].

EXERCISE 1C

(ii) Solve|2x—1|<|x-2|.

SOLUTION

(i) Sketching a graph of y= |2x— 1| and y=|x— 2| shows that the equation is

true for two values of x.

Figure 1.9

You can find these values by solving |2x—1|=|x— 2.

One method is to use the fact that |a| = |b| < a? = b%

[2x—1|=]|x-2]
Squaring: (2x—1)*=(x-2)?
Expanding: 4x?—4dx+1=x*—4x+4
Rearranging: 3x2-3=0
= x2—1=0

Factorising: (x—1)(x+1)=0

So the solutionis x= -1 or x=1.

1
N

91 8s1o49x3

(i) When [2x—1]|<|x-2], y=]|2x— 1| (drawn in red) is below y=|x— 2|
(drawn in blue) on the graph. So the solution to the inequality is =1 < x < 1.

1 Solve the following equations.

(i) |x+4]|=5 (i) | x—3|=4
(iii) | 3—x|=4 (iv) [4x—1]|=7
) |2x+1]|=5 (vi) | 8—2x|=6
(ii)| 2x+1|=| x+5| (vii)| 4x—1]=1]9—x|

(ix) | 3x—=2|=|4— x|

2 Solve the following inequalities.

i) |x+3|<5 (i) | x=2]<2
(iii) | x—5]|>6 (iv) |[x+1]|=2
W) |2x=-3|<7 (i) | 3x—=2|<4

WWW. yout ube. conl megal ect ur e
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3

Express each of the following inequalities in the form | x— a| < b, where
aand b are to be found.

M -1<x<3 (i) 2<x<8

(iii) 2 < x<4 (iv) -1 <x<6

(v) 9.9 <x<10.1 (vi) 0.5 <x<75
Sketch each of the following graphs on a separate set of axes.
M y=lx+2]| (i) y=12x—-3]

(i) y=|x+2|-2 (iv) y=|x[+1

(v) y=|2x+5|-4 (i) y=3+|x-2]|
Solve the following inequalities.

M |x+3[<|x—4]| i) [x—5]>0 w2
(i) [2x— 1| <|2x+3]| liv) | 2x| SET% P3|
v) [2x|>]x+3] (vi) | 29 5%= | x— 1|
Solve the inequality | x| > | 3x—2|.

[Cambridge International AS 8 A/Level Mathematics 9709, Paper 2 Q1 June 2005]

Solve the inequality 2x > | x— 1.
[Cambridge International/AS & A Level Mathematics 9709, Paper 3 Q2 June 2006]

Given that a is a positive cgistaiit, solve the inequality | x—3a| > | x—al.
[Cambridge Ifternational AS & A Level Mathematics 9709, Paper 3 Q1 November 2005]

A polynomifl 1}, X has terms in positive integer powers of x and may also
have a cgnstantterm.

The Crder of a polynomial in x is the highest power of x which appears in
the polynomial.

“he factor theorem states that if (x— a) is a factor of a polynomial f(x) then
f(a) =0 and x= ais a root of the equation f(x) = 0.
Conversely if f(a) = 0, then x— a is a factor of f(x).

The remainder theorem states that f(a) is the remainder when the
polynomial f(x) is divided by (x— a).

The modulus of x, written | x|, means the positive value of x.
The modulus function is

|x| =x, forx=0
|x| =—x, forx<0.
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Logarithms and
exponentials

v
N

swiyiuebo

Normally speaking it may be said that the forces of a capitalist
society, if left unchecked, tend to make the rich richer and the poor

poorer and thus increase the gap between them.
Jawaharlal Nehru

This cube has volume of 500 cm?>.

How would you calculate the length of its side, correct to the nearest millimetre,
without using the cube root button on your calculator?

You can think of multiplication in two ways. Look, for example, at 81 x 243,
which is 3* X 3°. You can work out the product using the numbers or you can
work it out by adding the powers of a common base — in this case base 3.

Multiplying the numbers: 81 x243=19683
Adding the powers of the base 3:  4+5=9and 3°=19683

Another name for a power is a logarithm. Since 81 = 3%, you can say that the
logarithm to the base 3 of 81 is 4. The word logarithm is often abbreviated to log
and the statement would be written log, 81 = 4. In general:

y=a* = logy=x
Notice that since 3* = 81, 318381 = 81. This is an example of a general result:

alosa* = x

F

Www. yout ube. com negal ect ure Pages2ofsss



P2

Logarithms and exponentials

what sapp: +92 323 509 4443, enmil: negal ecture@mail . con

EXAMPLE 2.1

INVESTIGATION
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(i) Find the logarithm to the base 2 of each of these numbers.
(a) 64 (b) 3 (e 1 @ 2

(ii) Show that 2108264 = 64,

SOLUTION

i (a) 64 =2°and so log,64 =6
(b) % =27"and so log, % =-1
(c) 1=2%ndsolog,1=0
(d) V2= 2% and so log, V2= %

(i) 28264 =26 = 64 as required @

Logarithms to the base 10 O

Any positive number can be expressed as a power of 10. Before the days

of calculators, logarithms to the base 10 we ed extensively as an aid to
calculation. There is no need for that neéwadays but the logarithm function
remains an important part of math ics, particularly the natural logarithm
which you will meet later in thi pter Base 10 logarithms continue to be a
standard feature on calculat occur in some specialised contexts: the pH
value of a liquid, for exan@ a measure of its acidity or alkalinity and is given
by log,(1/the conc of H" ions).

Since 1000 = 107 (ég 1000 =3

Similarly Q log,, 100 =2
& log,,10="1
log,,1= 0
¢ log,o(i5) = Tog,, (107) =-1
loglo(ﬁ) =log,, (1072) =2
and so on.

There are several everyday situations in which quantities are measured on
logarithmic scales.

What are the relationships between the following?

(i An earthquake of intensity 7 on the Richter Scale and one of intensity 8.
(ii) The frequency of the musical note middle C and that of the C above it.
(iii) The intensity of an 85 dB noise level and one of 86 dB.
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The laws of logarithms

The laws of logarithms follow from those for indices.

Multiplication

Writing xy = x X y in the form of powers (or logarithms) to the base a and using
the result that x = al°8a* gives

swiyiuebo

alOgaxy = al(’gax)( alOga)’
and so 2108, = glogx+log,y.

Consequently log xy=log x +log,y.
Division
Similarly log, (i) =log x—log,y.

Power zero
Since a®=1, log,1=0.

However, it is more usual to state such laws without reference to the base of the
logarithms except where necessary, and this convention is adopted in the key
points at the end of this chapter. As well as the laws given above, others may be
derived from them, as follows.

Indices

Since x"=xXxXxX...Xx (ntimes)
it follows that log x" =log x+log x+log x+ ... +log x (n times),
and so log x™ = nlog x.

This result is also true for non-integer values of n and is particularly useful
because it allows you to solve equations in which the unknown quantity is the
power, as in the next example.

Solve the equation 2"=1000.

SOLUTION
2"=1000

Taking logarithms to the base 10 of both sides (since these can be found on a
calculator),

log,, (2") = log,, 1000
nlog,, 2 = log,, 1000
e log,,1000

=9.97 to 3 significant figures
log;y2
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Note

Most calculators just have ‘log” and not ‘log,," on their keys.

EXAMPLE 2.3 A geometric sequence begins 0.2, 1, 5, ... .
The kth term is the first term in the sequence that is greater than 500 000.
Find the value of k.
SOLUTION
The kth term of a geometric sequence is given by a, = ax r*.,
In this case a = 0.2 and r = 5, so:
0.2 x 5571 >500000 @
sk-1 = 500000 O

0.2 ()
551 >2500000

.
Taking logarithms to the base 10 of both si@

log, 55! > log,, 2500000 0&

= (k- 1Dlog,,5> log,, 2500%

log,, 2560060
= k—1> 8w
Iders
= k-1 >§ﬁ
= k %, 5
Since kis an4 then k=11.
So the 1 is the first term greater than 500000.

Check: ™ 10th term=0.2 x 501 =390625 (< 500000) v
. 11th term =0.2 x 51171 =1953 125 (> 500000) v’

oots
A similar line of reasoning leads to the conclusion that:
log Yx = %logx

The logic runs as follows:

Sinceﬂ;x%x% X ..o X Q/gzx

n times
it follows that nlog Yx = log x
and so log Yx= Tlllogx
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The logarithm of a number to its own base

Since 5' = 5, it follows that log, 5= 1.

Clearly the same is true for any number, and in general,

log, a=1

Reciprocals

swiyiuebo

Another useful result is that, for any base,

1
log[L]=1
og(yj ogy

This is a direct consequence of the division law

log, (%) =log,x—log y
with x set equal to 1:
log (%) =logl -logy
=0-logy
=—logy
If the number y is greater than 1, it follows that % lies between 0 and 1 and log (%)

is negative. So for any base (>1), the logarithm of a number between 0 and 1 is

negative. You saw an example of this on page 24: loglo(i) =-1.

The result log (%) =—logy is often useful in simplifying expressions involving

logarithms.

ACTIVITY 2.1 Draw the graph of y =log, x, taking values of x like é, i, %, 1,2,4,8, 16.

Use your graph to estimate the value of V2.

Graphs of logarithms

Whatever the value, a, of the base (a >1), the graph of y=1log_x has the same
general shape (shown in figure 2.1).

YA y=log,x

Figure 2.1
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The graph has the following properties.
e The curve crosses the x axis at (1, 0).
o The curve only exists for positive values of x.

o Theline x=0 is an asymptote and for values of x between 0 and 1 the curve
lies below the x axis.

o There is no limit to the height of the curve for large values of x, but its gradient
progressively decreases.

o The curve passes through the point (a, 1).

Each of the points above can be justified by work that yo@ already covered.
How?

C
\J

The relationship y = log, x may be \@ n as x= a’, and so the graph of x=a”

is exactly the same as that of y =3og_ x. Interchanging x and y has the effect of
reflecting the graph in the lir(yj— , and changing the relationship into y = a%,

as shown in figure 2.2. @

Figure 2.2

The function y=a*, x€R is called an exponential function. Notice that while
the domain of y = a*is all real numbers (x € R), the range is strictly the positive
real numbers. y = a* is the inverse of the logarithm function so the domain of the
logarithm function is strictly the positive real numbers and its range is all real
numbers. Remember the effect of applying a function followed by it inverse is to
bring you back to where you started.

Thus log, (a*) = x and a(°8¥ = x,

Page 37 of 353



what sapp: +92 323 509 4443,

EXERCISE 2A

12%=32 < x=log,32

nmegal ecture@mi |l . con

Write similar logarithmic equivalents of these equations. In each case find also

the value of x, using your knowledge of indices and not using your calculator.

(i) 3*=
(iii) 2*=
(v) 7*=1

= \O

(i) 4*=64
(iv) 5°=3
(i) 165=2

2 Write the equivalent of these equations in exponential form. Without using

your calculator, find also the value of y in each case.

(i y=log,9
(iii) y=1log,16
v) y=log,8

(ii) y=log,125
(iv) y=log,1

0 v=log. (L
(vi) y=log|5;

3 Write down the values of the following without using a calculator. Use your

calculator to check your answers for those questions which use base 10.

(i log,, 10000
(iii) log,, J10
(v) log, 81

(vii) log, J27

(ix) 10g42

(ii) loglo(m)
(iv) log,, 1

(vi) log, (é)
(viii) log, i
() log, (é)

4 Write the following expressions in the form log x where x is a number.

M log5+log2

(iii) 2log6

(v) %log 9

(vii) log5+3log2—log 10
(ix) %log Ji6 + 2log (%)

5 Express the following in terms of log x.

(i logx?
(i) log Jx
(v) 3log x+log x*
6 Solve these inequalities.

i 2*<128

(iii) 4+ 6 =70

(v} 0.4-0.1=0.3
ii)2 <5< 38

(ix) [2¥—4]<2

WWW. yout ube. conl megal ect ur e

(ii) log6-log3

(iv) —log7

(vi) ilog 16 +log 2

(viii) log 12 —2log2—1log9
(x) 210g4+10g9—%log 144

(ii) log x°—2log x
(iv) log X+ log Ix

(vi) log (\/; )5

(i) 3*+5=32
(iv) 0.6*<<0.8
(vi) 0.5*+02=<1
(viii) 1 =7¥<5
x) |5=-7|<4

R,
N

\vZ 9s12409x3

R
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7 Express the following as a single logarithm.
2log,,x—log,,7
Hence solve
2log,,x—log,,7 =log,,63.
8 Use logarithms to the base 10 to solve the following equations.

(i) 2*=1000000 (i) 2¥=0.001
(iii) 1.08*=2 (iv) 1.1*=100
(v) 0.99*=0.000001

9 A geometric sequence has first term 5 and common ratio 7.
The kth term is 28 824 005.
Use logarithms to find the value of k. @
10 Find how many terms there are in these geom¢trig sequences.

(i -1,2,-4,8,...,-16777216 .
(i) 0.1,0.3,0.9,2.7,...,4304672.1 @

11 (i) Solve the inequality | y—5 |
(i) Hence solve the inequality | 3*= 5| < 1, giving 3 significant figures in
your answer.
[Cambridge I@g&al AS & A Level Mathematics 9709, Paper 2 Q3 November 2007]

12 Given that x=4(3y), express y in terms of x.
bridge International AS & A Level Mathematics 9709, Paper 3 Q1 June 2006]

13 Usingt itution u = 3% or otherwise, solve, correct to 3 significant
equation

3¥=24+37%
* [Cambridge International AS & A Level Mathematics 9709, Paper 3 Q4 June 2007]

Modellin urves

When you obtain experimental data, you are often hoping to establish a
mathematical relationship between the variables in question. Should the data
fall on a straight line, you can do this easily because you know that a straight line
with gradient m and intercept ¢ has equation y = mx+ c.
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In an experiment the temperature 0 (in °C) was measured at different times # (in

seconds), in the early stages of a chemical reaction.

The results are shown in the table below.

1
N

t 20 40 60 80 100 120 2
o
0 16.3 20.4 24.2 28.5 32.0 36.3 E
=
«Q
g
(i) Plota graph of 6 against t. 3
1]
(7]
(i) What is the relationship between 6 and #?
SOLUTION
o 00\
40
X
35
30
25
20
15 g
10
0 20 40 60 80 100 120
t (seconds)
Figure 2.3
(ii) Figure 2.3 shows that the points lie reasonably close to a straight line and so
it is possible to estimate its gradient and intercept.
Intercept: ¢=12.3
. 36.3—16.3
Gradient: m==—""2—-"-=0.2
120 - 20
In this case the equation is not y = mx + cbut 6 = mt + ¢, and so is given by
0=0.2t+12.3
It is often the case, however, that your results do not end up lying on a straight
line but on a curve, so that this straightforward technique cannot be applied. The
appropriate use of logarithms can convert some curved graphs into straight lines.
This is the case if the relationship has one of two forms, y = kx" or y = ka*. 31
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The techniques used in these two cases are illustrated in the following examples.
In theory, logarithms to any base may be used, but in practice you would only
use those available on your calculator: logarithms to the base 10 and natural
logarithms. The base of natural logarithms is a number, 2.71828..., and is
denoted by e. In the next section you will see how this apparently unnatural
number arises naturally; for the moment what is important is that you can apply
the techniques using base 10.

Relationships of the form y = kx"

A water pipe is going to be laid between two points and an investigation is carried
out as to how, for a given pressure difference, the rate of flow R litres per second
varies with the diameter of the pipe d cm. The following ?@e collected.

1 2 3 5 @‘

R 0.02 0.32 1.62 12.53 \))9.80

*
It is suspected that the relationship betweer@nd d may be of the form R= kd"
where k is a constant.

(i) Explain how a graph of log%g'g log R tells you whether this is a good
model for the relationshi

(ii) Make out a table of v cnog10 d against log,, R and plot these on a graph.

(iii) If appropriate, wozraph to estimate the values of n and k.

SOLUTION (b'
15%

(i) Ifthe ip is of the form R = kd", then taking logarithms gives

R =log k+log d"

r logR=nlogd+]log k.
.
is is in the form y = mx + cas n and log k are constants (so can replace m

and ¢) and log R and log d are variables (so can replace y and x).

logR = nlogd + logk
0 T 7 0
y = m x + c

So log R = nlogd + log k is the equation of a straight line.

Consequently if the graph of log R against log d is a straight line, the model
R=kd" is appropriate for the relationship and # is given by the gradient of
the graph. The value of k is found from the intercept, log k, of the graph with
the vertical axis.

log,,k = intercept = k = 10intercept
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(i) Working to 2 decimal places (you would find it hard to draw the graph to

greater accuracy) the logarithmic data are as follows. PZ
log,, d 0 0.30 0.48 0.70 1.00 m
log,, R -1.70 —0.49 0.21 1.10 2.30 E
3
10g10R 4 g
’ g
ya S
X &
2 A
pd
1 l/
//
0 ; >
012 A 016 018 1o H2
7 log,,d
1 A
pd
K
-2
Figure 2.4

(iii) In this case the graph in figure 2.4 is indeed a straight line, with gradient 4
and intercept —1.70, so n=4 and k= 10717 =0.020 (to 2 significant figures).

The proposed equation linking R and d is a good model for their
relationship, and may be written as:

R=0.024*

Exponential relationships

EXAMPLE 2.6 The temperature in °C, 6, of a cup of coffee at time ¢ minutes after it is made is
recorded as follows.

t 2 4 6 8 10 12

0 81 70 61 52 45 38

(i) Plot the graph of 6 against .

(ii) Show how it is possible, by drawing a suitable graph, to test whether the
relationship between 6 and ¢ is of the form 6 = ka’, where k and a are constants.

(iii) Carry out the procedure.

F
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SOLUTION
U 0O
90
N
X
N
70
\\
AN
50 ™
X.
3
30

0 2 4 6 ¢ 10 12 14
t (minutes)
Figure 2.5 0&

(ii) If the relationship is of the Nl} 0 = ka’, taking logarithms of both sides gives

log 6 = log k + L
or log 6 = tlog a k.
This is in the = mx+ cas logaand log k are constants (so can replace
m and c) 0 and tare variable (so can replace y and x).

= loga ¢ + logk
X T 7 X

y = m X + c
So log6 = tloga + log k is the equation of a straight line.

Consequently if the graph of log 6 against ¢ is a straight line, the model

0 = ka' is appropriate for the relationship, and log a is given by the gradient
of the graph. The value of a is therefore found as a = 108%™, Similarly, the
value of kis found from the intercept, log, , k, of the line with the vertical
axis: k= 10Mtercept,

(iii) The table gives values of log,, 6 for the given values of «.

t 2 4 6 8 10 12

log,,0 1.908 1.845 1.785 1.716 1.653 1.580

The graph of log , 6 against ¢ is as shown in figure 2.6.
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log,, 60 4 1.974
50 P2
q
m
1.8 ?
- -
~ o
8
a N
17 w
1.6
15
0 2 4 6 8 10 12 14

Figure 2.6

The graph is indeed a straight line so the proposed model is appropriate.
The gradient is —0.033 and so a = 107%0%3=0.927.
The intercept is 1.974 and so k= 10'974=94.2.

The relationship between 6 and ¢ is given by:
0=94.2x0.927"

Note

Because the base of the exponential function, 0.927, is less than 1, the function’s
value decreases rather than increases with t.

1 The planet Saturn has many moons. The table below gives the mean radius

of orbit and the time taken to complete one orbit for five of the best-known
of them.

Moon Tethys Dione Rhea Titan Tapetus
Radius R (x 10° km) 2.9 3.8 5.3 12.2 35.6
Period T (days) 1.9 2.7 4.5 15.9 79.3

It is believed that the relationship between R and T'is of the form R= kT".

(i) How can this be tested by plotting log R against log T?
(ii) Make out a table of values of log R and log T'and draw the graph.
(iii) Use your graph to estimate the values of k and n.

In 1980 a Voyager spacecraft photographed several previously unknown
moons of Saturn. One of these, named 1980 S.27, has a mean orbital radius
of 1.4 x 10° km.

F—

(iv) Estimate how many days it takes this moon to orbit Saturn.
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2 The table below shows the area, A cm?, occupied by a patch of mould at time

t days since measurements were started.

emai | :

nmegal ecture@mi |l . con

t

0

1

2

3

4

5

A

0.9

1.3

1.8

2.5

3.5

5.2

It is believed that A may be modelled by a relationship of the form A = kb'.

(i) Show that the model may be written as log A = tlogb + log k.

(i) What graph must be plotted to test this model?

(i) Plot the graph and use it to estimate the values of b and k.

(iv) (a)

(b) Estimate the area of the mould after 3.5 days.
(v) How is this sort of growth pattern described?

3 The inhabitants of an island are worried about
place. A research worker uses records over the la
number of trees at different dates.

It is suggested that the number of tr

with the number of years, £, since,l

the equation

(i) Show tha l@mdel may be written as log N= tloga + logk.

The dia

(ii) Estimate the values of k and a.
What is the significance of k?

WWW. yout ube. cont megal ect ur e

N=ka'

where k and a ar onsg{

S.

log N J

6.6

6.4

6.2

5.8

\

0\

s the graph of log N against .

r

Estimate the time when the area of mould was 2 cm?.

\

of deforestation taking

00 years to estimate the

20

40

60

80

100

% 3
s N has been decreasing exponentially
,'so that N may be modelled by
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(i) Show that the graph of log s against log t produces a straight line.

emai | :

nmegal ecture@mi |l . con
4 The time after a train leaves a station is recorded in minutes as ¢t and the

distance that it has travelled in metres as s. It is suggested that the relationship P2
between s and ¢ is of the form s= kt"” where k and # are constants.

The diagram shows the graph of log s against log t.

log

\

(ii) Estimate the values of k and n.

(iii) Estimate how far the train travelled in its first 100 seconds.

0.2

0.4

0.6 logt

gz 9s1249x3

(iv) Explain why you would be wrong to use your results to estimate the

distance the train has travelled after 10 minutes.

5 The variables rand A satisfy the equation A = kb', where b and k are constants.
(i) Show that the graph of log A against t produces a straight line.

The graph of log A against ¢ passes through the points (0, 0.2) and (4, 0.75).

log 4

3

(0,0.2)

(4,0.75)

(¢}

(ii) Find the values of b and k.

i

6 All but one of the following pairs of readings satisfy, to 3 significant figures, a
formula of the type y= A x x5,

X

1.51

2.13

3.50

4.62

5.07

7.21

y

2.09

2.75

4.09

5.10

6.21

7.28

Find the values of A and B, explaining your method. If the values of x are correct,
state which value of y appears to be wrong and estimate what the value should be.
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7 An experimenter takes observations of a quantity y for various values of a

variable x. He wishes to test whether these observations conform to a formula
y=Ax xBand, if so, to find the values of the constants A and B.

Take logarithms of both sides of the formula. Use the result to explain what he
should do, what will happen if there is no relationship, and if there is one, how
to find A and B.

Carry this out accurately on graph paper for the observations in the table, and
record clearly the resulting formula if there is one.

X 4 7 10 13 20

y 3 3.97 4.74 5.41 6.71

It is believed that the relationship between the variabled x y is of the form
y=Ax". In an experiment the data in the table are @ned.

S
X 3 6 10 15 20
L
y 10.4 29.4 63.2 1@16.2 178.19

In order to estimate the constant& n, log,,y is plotted against log, ,x.

(i) Draw the graph of log ’&inst log,,x.
(i) Explain and justify c;ﬁe shape of your graph enables you to decide
whether the rﬁo p is indeed of the form y= Ax".

(i) Estimate thezalwes of A and n.
56' MEI

Ina w%(periment on cell growth the following data were obtained,

wher e number of cells at a time # minutes after the start of the growth.
\.: 1.5 2.7 3.4 8.1 10
N 9 19 32 820 3100

At t=10 a chemical was introduced which killed off the culture.

The relationship between N and fwas thought to be modelled by N = ab?,
where a and b are constants.

(i) Show that the relationship is equivalent to log N = tlog b + log a.
(ii) Plot the values of log N against t and say how they confirm the supposition
that the relationship is of the form N = ab’.

(iii) Find the values of a and b.

(iv) If the growth had not been stopped at t=10 and had continued according

to your model, how many cells would there have been after 20 minutes?
[MEI]
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10 Itis believed that two quantities, zand d, are connected by a relationship
of the form z= kd", where k and n are constants, provided that d does not
exceed some fixed (but unknown) value, D.

R,
N

An experiment produced the following data.

d 780 810 870 930 990 1050 1110 1170

z 2.1 2.6 3.2 4.0 4.8 5.6 5.9 6.1

(i) Explain why, if z= kd", then plotting log, ,zagainst log, ,d should
produce a straight-line graph.
(i) Draw up a table and plot the values of log, ,z against log, ,d.

uonouny wyuebo| jeinjeu sy

(i) Use these points to suggest a value for D.
(iv) It is known that, for d < D, nis a whole number.

Use your graph to find the value of n.

Show also that k=5 x 10~°.
(v) Use your value for n and the estimate k=5 X 10~ to find the value of

d for which z=3.0.

[MEI]
11 The variables x and y satisfy the relation 3 = 4%+2,

(i) By taking logarithms, show that the graph of y against x is a straight line.
Find the exact value of the gradient of this line.
(ii) Calculate the x co-ordinate of the point of intersection of this line with
the line y = 2x, giving your answer correct to 2 decimal places.
[Cambridge International AS & A Level Mathematics 9709, Paper 2 Q2 June 2007]

The natural logarithm function
The shaded region in figure 2.7 is bounded by the x axis, the lines x=1 and x=3,

3
and the curve y = % The area of this region may be represented by L% dx.

YA

Figure 2.7

.
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(2] Explain why you cannot apply the rule

INVESTIGATION

WWW. yout ube. cont megal ect ur e

+1
ka” dx= kx" +c
n+1

to this integral.

However, the area in the diagram clearly has a definite value, and so we need to
find ways to express and calculate it.

Estimate, using numerical integration (for example by divi the area up into a
number of strips), the areas represented by these integral

(i Jgdx (ii) Jgdx ()O (iii) Jf%dx

What relationship can you see between you@swers?

\

The area under the curve y = 1 betv@x =1and x= g, thatis J.g dx, depends

X
on the value a. For every ValuC}t(greater than 1) there is a definite value of the

area. Consequently, the a unction of a.

To investigate this fuligtion you need to give it a name, say L, so that L(a) is the
area from 1 to a ar%x is the area from 1 to x. Then look at the properties of L(x)
1

to see if its beh s like that of any other function with which you are familiar.

The investigftidpn you have just done should have suggested to you that

Jlgdx+.ﬁ%dx= J‘g dx.
§ can now be written as
L(3) +L(2) =L(6).

This suggests a possible law, that
L(a) + L(b) = L(ab).

At this stage this is just a conjecture, based on one particular example. To prove
it, you need to take the general case and this is done in the activity below. (At
first reading you may prefer to leave the activity, accepting that the result can
be proved.)
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ACTIVITY 2.2 Prove that L(a) + L(b) = L(ab), by following the steps below.

( @ Explain, with the aid of a diagram, why

Notice that the limits of the left-hand integral, ab and a, are
values for x but those for the right-hand integral, 5 and 1,

are values for z. So, to find the new limits for the right-hand
integral, you should find z when x = a (the lower limit) and
when x = ab (the upper limit). Remember az = x.

b
Explain why | 'L dz=1();
(i) Use the results from parts (i) and (ii) to show that
L(a) + L(b) =L(ab).
What function has this property? For all logarithms
log(a) + log(b) =log(ab).

Could it be that this is a logarithmic function?

ACTIVITY 2.3 Satisfy yourself that the function has the following properties of logarithms.
(i L(1)=0
m)u@_uw=LG)
(iii) L(a") = nL(a)

The base of the logarithm function L(x)

Having accepted that L(x) is indeed a logarithmic function (for x > 0), the
remaining problem is to find the base of the logarithm. By convention this is
denoted by the letter e. A further property of logarithms is that for any base p

logpp= 1 (p>1).

So to find the base e, you need to find the point such that the area L(e) under the
graph is 1. See figure 2.8.

YA

o
—
@
=

Figure 2.8

You have already estimated the value of L(2) to be about 0.7 and that of L(3) to
be about 1.1 so the value of e is between 2 and 3.

R,
N

uonouny wyuebo| jeinjeu sy

e
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ACTIVITY 2.4  You will need a calculator with an area-finding facility, or other suitable
PZ technology, to do this. If you do not have this, read on.

m Use the fact that L% dx =1 to find the value of e, knowing that it lies between 2
and 3, to 2 decimal places.

The value of e is given to 9 decimal places in the key points on page 50. Like T,
e is a number which occurs naturally within mathematics. It is irrational: when
written as a decimal, it never terminates and has no recurring pattern.

The function L(x) is thus the logarithm of x to the base e, log, x. This is often
called the natural logarithm of x, and written as In x.

Values of x between 0 and 1 @

So far it has been assumed that the domain of the fun x is the real
numbers greater than 1 (x € R, x> 1). However, th% ain of In x also includes
values of x between 0 and 1. As an example of a va

atln%. @ .
Since 1n(g)=lna—lnb 0&
= ln(%)=ln1—ln2=—%(smcelnl=0)

In the same way, you can sh@at for any value of x between 0 and 1, the value
of Inx is negative.

Logarithms and exponentials

f x between 0 and 1, look

When the value ofzg'kry close to zero, the value of Inx is a large negative

number. C
In = 1000 = -6.9

1 _ —
000000) = -In1000000 =-13.8

‘— 0, In x ——eo (for positive values of x).

he graph of the natural logarithm function

The graph of the natural logarithm function (shown in figure 2.9) has the
characteristic shape of all logarithmic functions and like other such functions it
is only defined for x > 0. The value of Inx increases without limit, but ever more
slowly: it has been described as ‘the slowest way to get to infinity’.

YA
y=Inx

1
Figure 2.9 /
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Historical note

The exponential function
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Logarithms were discovered independently by John Napier (1550-1617), who lived
at Merchiston Castle in Edinburgh, and Jolst Blrgi (1552-1632) from Switzerland.
It is generally believed that Napier had the idea first, and so he is credited with
their discovery. Natural logarithms are also called Naperian logarithms but there is
no basis for this since Napier’s logarithms were definitely not the same as natural
logarithms. Napier was deeply involved in the political and religious events of his
day and mathematics and science were little more than hobbies for him. He was a
man of remarkable ingenuity and imagination and also drew plans for war chariots

emai | :

nmegal ecture@mi |l . con

that look very like modern tanks, and for submarines.

Making x the subject of y=Inx, using
the theory of logarithms you obtain

x=¢e’.

Interchanging x and y, which has the
effect of reflecting the graph in the line
y = x, gives the exponential function

y=e"

The graphs of the natural logarithm

function and its inverse are shown in

figure 2.10.

YA

R,
N

uonouny jeiyusuodxa sy

Figure 2.10

=Y

You saw in Pure Mathematics 1 Chapter 4 that reflecting in the line y = x gives an
inverse function, so it follows that e* and ln x are each the inverse of the other.

Notice that el2* = x, using the definition of logarithms, and In(e*) = xIne=x.

Although the function e* is called the exponential function, in fact any function

of the form a* is exponential. Figure 2.11 shows several exponential curves.

Figure 2.11

The exponential function y = e* increases at an ever-increasing rate. This is
described as exponential growth.

m
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By contrast, the graph of y =™, shown in figure 2.12, approaches the x axis ever
more slowly as x increases. This is called exponential decay.

YA

1\

>
>
X

Figure 2.12

You will meet e* and In x again later in this book. In Chapter 4 you learn how to
differentiate these functions and in Chapter 5 you learn integrate them In
this secion you focus on practical applications which r &u to use the

key on your calculator.

The number, N, of insects in a colony is given by N =2000¢%!" where tis the
number of days after observations have be

(i) Sketch the graph of N against ¢. :&

(ii) What is the population of the colanly after 20 days?
(iii) How long does it take tht; y to reach a population of 10000?

SOLUTION @

(i)

NA

Q(b' N=20001t
& 2000

When 7= 0, N =2000¢e’ = 2000

3>
S

(6] t

Figure 2.13

(i) Whent=20, N=2000e%!*20=14778
The population is 14778 insects.

(iii) When N=10000, 10000 =2000¢%!*
5= eO.It

Taking natural logarithms of both sides,

In5 = ln(e0
In(e®) = x.
In5=0.1¢t

and so t=101n5
t=16.09...

It takes just over 16 days for the population to reach 10000.
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The radioactive mass, M grams in a lump of material is given by M = 25e
where tis the time in seconds since the first observation.

(i) Sketch the graph of M against t.
(ii)  What is the initial size of the mass?
(iii) What is the mass after 1 hour?

(iv) The half-life of a radioactive substance is the time it takes to decay to half of

its mass. What is the half-life of this material?

SOLUTION

(i) MA
25

<Y

Figure 2.14
(i) Whent=0, M =25¢°
M=25
The initial mass is 25g.

(iii) After 1 hour, t=3600
M = 25¢-0-0012 X 3600

M=0.3324...
The mass after 1 hour is 0.33 g (to 2 decimal places).

(iv) The initial mass is 25g, so after one half-life,
1
M= x25=125g
At this point the value of tis given by

12.5 = 25¢ 000121
— 0.5 = e-0.0012¢

Taking logarithms of both sides:

In 0.5 = Ine~0-0012¢

In 0.5 = -0.0012¢
o In0.5
©—0.0012

t=577.6 (to 1 decimal place).

The half-life is 577.6 seconds. (This is just under 10 minutes,
so the substance is highly radioactive.)

WWW. yout ube. conl megal ect ur e
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EXAMPLE 2.9 Make p the subject of In(p) —In(1—p) =1
SOLUTION
Using log a —log b = log (%)
ln(l_i) =t

Writing both sides as powers of e gives

ln(ij Inx
e \U-p) _ ot Remember ™ = x

EXAMPLE 2.10 Solve these equations. 0&

(i) In(x—4)=Inx-4
(i) e¥+eX=6 ()

<
oD

(i)
= — elnx—4
é }ax— 4 = elnxe—t
x—4=xe*

farrange to get all the x terms on one side:

SOLUTION

x—xet=4
x(1-e*)=4
x=—2
1—e¢*
So x=4.07

WWW. yout ube. cont megal ect ur e
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EXERCISE 2C

(i) e?*+e*=6is a quadratic equation in e*.

Substituting u = e*:

w+u=6
So w+u—6=0
Factorising: (u—2)(u+3) =0
Sou=2oru=-3.
Since u=e*then e*=2 or e*=-3.
e*=-3 has no solution.
e*=2=x=In2

So x=0.693

1 Make x the subject of Inx —Inx, = kt.
2 Make t the subject of s= s e 7.

3 Make p the subject of Inp=-0.021.

4 Make x the subject of y— 5= (y, - 5)e*.
5 Solve these equations.

(i) In3-x)=4+Inx
(ii) In(x+5)=5+1Inx
(i) In(2 - x)=2 +Inx
(iv) e":;ix

(v) e?*—8e*+16=0

(vi) e+ e*=12

R,
N

9z 9s1949x3

6 A colony of humans settles on a previously uninhabited planet. After ¢ years,

their population, P, is given by P = 100e%>",

(i) Sketch the graph of Pagainst ¢.
(ii) How many settlers land on the planet initially?
(iii) What is the population after 50 years?

(iv) How long does it take the population to reach 1 million?
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7 The height h metres of a species of pine tree ¢ years after planting is modelled by
the equation h=20-19 x 0.9".

(i) What is the height of the trees when they are planted?
(ii) Calculate the height of the trees after 2 years, and the time taken for the
height to reach 10 metres.

The relationship between the market value $y of the timber from the tree and
the height h metres of the tree is modelled by the equation y = ah’, where a
and b are constants.

The diagram shows the graph of In y plotted against In h.

Iny A
5 I

=~

7/
\\

> e
(b,\ 1
O

-2

(i) Usé the graph to calculate the values of a and b.

“Calculate how long it takes to grow trees worth $100.
[MEL adapted|

8 Itis given that In(y+5) —Iny=2 Inx. Express y in terms of x, in a form not
involving logarithms.
[Cambridge International AS & A Level Mathematics 9709, Paper 2 Q2 November 2009]

9 Given that (1.25)*= (2.5)’, use logarithms to find the value of % correct to
3 significant figures.

[Cambridge International AS & A Level Mathematics 9709, Paper 2 Q1 June 2009]
10 Solve, correct to 3 significant figures, the equation

X + e2X = 3%

[Cambridge International AS & A Level Mathematics 9709, Paper 3 Q2 June 2008]
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11 The variables x and y satisfy the equation y= A(b™*), where A and b are
constants. The graph of In y against x is a straight line passing through the

points (0, 1.3) and (1.6, 0.9), as shown in the diagram. Find the values of A
and b, correct to 2 decimal places.

Iny A
1.
<013
(1.6,0.9)
0 x

[Cambridge International AS & A Level Mathematics 9709, Paper 2 Q3 November 2008]
12 Solve the equation In(2 + e™) = 2, giving your answer correct to 2 decimal
places.

[Cambridge International AS & A Level Mathematics 9709, Paper 3 Q1 June 2009]

13 Two variable quantities x and y are related by the equation y = Ax", where A and
nare constants. The diagram shows the result of plotting In y against In x for four
pairs of values of x and y. Use the diagram to estimate the values of A and n.

Iny A
2

1 2 3 'lnx

[Cambridge International AS & A Level Mathematics 9709, Paper 3 Q2 November 2005]

P2

9z 9s1949x3
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1 A function of the form a* is described as exponential.
2 y=log x> a'=x.

3 Logarithms to any base

Multiplication: log xy=1log x+log y
Division: log (%) =log x—log y
Logarithm of 1: log1=0

Powers: log x" = nlog x
Reciprocals: log (%) =—logy
Roots: log Ux = %log X

Logarithm to its own base: log, a=1

4 Logarithms may be used to discover the relationsfiip between the variables
in two types of situation.

y=kx" < log y=log k+ nlog x

Plot log y against log x: this relatidnstiip gives a straight line where 7 is the
gradient and log k is the intercept.

y=ka* & log y=log k= ¥lsg a

Plot log y against %; this relationship gives a straight line where log a is the
gradient and log"Mis the intercept.

5 Jl dx=1log tx )% c.
X > 3
6 log x(s'alied the natural logarithm of x and denoted by In x.

7 é=2.7182818284... is the base of natural logarithms.

2" and In x are inverse functions: e = x and In(e¥) = x.
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Trigonometry

v
N

Music, when soft voices die,
Vibrates in the memory -

P.B. Shelley

Answouobii)

€ Both of these photographs show forms of waves. In each case, estimate the
wavelength and the amplitude in metres (see figure 3.1).

Use your measurements to suggest, for each curve, values of a and b which would
make y = asin bx a suitable model for the curve.

YA
ar —T y=asinbx
amplitude
0 n 2n m\  x
b b b
—al-
wavelength

Figure 3.1 51
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Reciprocal trigonometrical functions

As well as the three main trigonometrical functions, there are three more which
are commonly used. These are their reciprocals — cosecant (cosec), secant (sec)
and cotangent (cot), defined by

1 1 _ 1 (_cosO
cosecl = o’ secH = s’ cotl = and (— sin9)'

Each of these is undefined for certain values of 6. For example, cosec 6 is
undefined for 6 = 0°, 180°, 360°, ... since sin 0 is zero for these values of 6.

Figure 3.2 shows the graphs of these functions. Notice how all three of the
functions have asymptotes at intervals of 180°. Each of the graphs shows one
of the main trigonometrical functions as a red line and the related reciprocal

function as a blue line.

WWW. yout ube. cont megal ect ur e
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EXAMPLE 3.2
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Using the definitions of the reciprocal functions two alternative trigonometrical
forms of Pythagoras’ theorem can be obtained.

(i) sin%0 + cos?@ = 1

sin®f | cos’6 _ 1
cos?0  cos*O cos?O
= tan?0 + 1 =sec?0.

Dividing both sides by cos?6:

This identity is sometimes used in mechanics.

(ii) sin%0 + cos?@ = 1

20 sin’f |, cos’6 _ 1
sin?@ sin’@  sin?0

= 1+ cot? = cosec?0.

Dividing both sides by sin

Questions concerning reciprocal functions are usually most easily solved by
considering the related function, as in the following examples.

Find cosec 120° leaving your answer in surd form.

SOLUTION

1

120°0= L
cosec 1207 = & o

[&

1+

Sl

Find values of 0 in the interval 0° < 0 < 360° for which sec?0 =4 + 2 tané.

SOLUTION

First you need to obtain an equation containing only one trigonometrical function.
sec’0=4+2 tan6

= tan’6 + 1=4 + 2 tan6

=  tan’0-2tanf-3=0

= (tanf-3)(tanf+1)=0

= tanf=3ortanf=-1

tan6 =3 = 60=71.6° (calculator)
or 0=71.6°+180°=251.6° (see figure 3.3, overleaf)

Y
N

suonouny jesu3swouohiy jesoidisey
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tanf=-1 = 0=-45° (notin the required range)
or 0=-45°+180°=135° (see figure 3.3)

or 0=135°+180°=315°

v A
3_7 - 1

Figure 3.3 0&
The values of 6 are 71.6°, 135&)&ﬁ°, 315°,

1 Solve the following equdtibdns for 0° < x < 360°.

(i) cosecx=1 % (ii) secx=2 (iii) cotx=4

(iv) secx= % (v) cotx=-1 (vi) cosecx=-2
2 Findt ng giving your answers as fractions or in surd form.
You ld not need your calculator.
«ot135° (ii) sec150° (iii) cosec240°
v) sec210° (v) cot270° (vi) cosec225°

3 In triangle ABC, angle A=90° and sec B=2.

(i) Find the angles Band C.
(ii) Find tan B.
(i) Show that 1 + tan? B = sec?B.

4 In triangle LMN, angle M =90° and cot N=1.

(i) Find the angles L and N.
(ii) Find secL, cosec L, and tan L.
(iii) Show that 1 + tan?L = sec? L.
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5 Maliniis 1.5m tall.
At 8 pm one evening her shadow is 6 m long.
Given that the angle of elevation of the sun at that moment is «

(i) show that cota =4
(ii) find a.

6 (i) For what values of &, where 0° < a < 360°, are sec«, coseca and cota all
positive?
(ii) Are there any values of & for which seca, coseca and cota are all negative?
Explain your answer.
(i) Are there any values of & for which seca, coseca and cota are all equal?

Explain your answer.

7 Solve the following equations for 0° < x < 360°.

(i) cosx=secx (if) cosecx=secx
(i) 2 sinx=3 cot x (iv) cosec?x + cot?x=2
(v) 3sectx —10tanx=0 (vi) 1+ cot?x=2tan%x

Compound-angle formulae

ACTIVITY 3.1

WWW. yout ube. conl megal ect ur e

The photographs at the start of this chapter show just two of the countless
examples of waves and oscillations that are part of the world around us.

Because such phenomena are modelled by trigonometrical (and especially sine
and cosine) functions, trigonometry has an importance in mathematics far
beyond its origins in right-angled triangles.

Find an acute angle 0 so that sin(6 + 60°) = cos(6 — 60°).

Hint: Try drawing graphs and searching for a numerical solution.

You should be able to find the solution using either of these methods, but
replacing 60° by, for example, 35° would make both of these methods rather
tedious. In this chapter you will meet some formulae which help you to solve
such equations more efficiently.

It is tempting to think that sin(@ + 60°) should equal sin6 + sin 60°, but this
is not so, as you can see by substituting a numerical value of 6. For example,
putting 8 = 30° gives sin(6 + 60°) = 1, but sinf + sin60° = 1.366.

Y
N
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To find an expression for sin(6 + 60°), you would use the compound-angle formula
sin(0 + ¢) =sinf cosp + cos O sing.

This is proved below in the case when 6 and ¢ are acute angles. It is, however,
true for all values of the angles. It is an identity.

(D Asyou work through this proof make a list of all the results you are assuming.

Figure 3.4 ()

L 2
Using the trigonometrical formula for the a@’of a triangle (see figure 3.4):
area ABC = area ADC +ar BC
%absin(@ +¢)= %bhsin&ahsinfp

W
h=acosg

frodm ADBC

sin(@ + @) =sinf cos¢ + cosOsing ®

.
s the first of the compound-angle formulae (or expansions), and it can be
used to prove several more. These are true for all values of 6 and ¢.

Replacing ¢ by —¢ in @ gives
sin(f — @) = sinf cos(—p) + cosOsin(—¢)

cos(—¢) =cos¢

= sin(f — @) =sinf cos¢ — cosOsing ®

sin(—¢) =—sin¢

Page 65 of 353



what sapp:
ACTIVITY 3.2

WWW. yout ube. conl megal ect ur e

+92 323 509 4443, emnil: negal ecture@nmail . comn

Derive the rest of these formulae.

(i) To find an expansion for cos(6 — @) replace 6 by (90° — 0) in the expansion of
sin(6 + ).

Hint: sin(90° — ) = cosO and cos(90° — 0) = sin0

(ii) To find an expansion for cos( + @) replace ¢ by (—¢) in the expansion of
cos(0 — ).
sin (0 + ¢)

(iii) To find an expansion for tan(0 + ¢), write tan(6 + ¢) = m.

Hint: After using the expansions of sin(6 + ¢) and cos(0 + ¢), divide the
numerator and the denominator of the resulting fraction by cosf cos¢ to
give an expansion in terms of tanf and tan¢.

(iv) To find an expansion for tan(f — ¢) in terms of tan6 and tan¢, replace ¢ by
(—¢) in the expansion of tan(6 + ¢).

Are your results valid for all values of 0 and ¢?

Test your results with 8 = 60°, ¢ = 30°.

The four results obtained in Activity 3.2, together with the two previous results,
form the set of compound-angle formulae.

sin(6 + ¢) =sinfcos¢ + cosOsing
sin(f —¢) =sinOcosg — cosOsing
cos(6 + @) = cosOcosg —sinBsing
cos(0 — @) =cosOcosg + sinfsing

tan(6) + ¢) = % @+ ¢) = 90°, 270°, ..
_ tanO—tan¢ B o .
tan(0—¢)——1+tan0tan¢ (6 —¢) # 90°270°, ...

You are now in a position to solve the earlier problem more easily. To find an
acute angle 6 such that sin(6 + 60°) = cos(6 — 60°), you expand each side using
the compound-angle formulae.

sin(0 + 60°) = sin6 cos 60° + cosHsin 60°

| V3

= Esm0+ TCOSH ©)

c0sBcos60° + sinfsin 60°

1 J3

= Ec056+73m9 ©)

cos(f — 60°)

P2
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From @ and @

1. 4.3 1 V3

Esm0+ TCOSH = §c030+ TSIHQ

sinf + \/gcosez cosf +x/gsin6

Collect like terms:

= (\/5 - 1)c050= (\/g— l)sinG

cosf =sin6
Divide b 0 1= 0 This gives an equation in one
vide by cosu: =tan trigonometrical ratio.
0 =45°

Since an acute angle was required, this is the only root.

Uses of the compound-angle formulae

You have already seen compound-angle formulae used in solving a
trigonometrical equation and this is quite algépmon application of them.
However, their significance goes well befond that since they form the basis for a
number of important techniques. ThoSg, covered in this book are as follows.

The derivation of double-angle formulae
The derivation and uses oiithdse are covered on pages 61 to 63.

The addition of differer’sine and cosine functions

This is covered gmpages 66 to 70. It is included here because the basic
wave form igAsite’ curve. It has many applications, for example in applied
mathematigsypnysics and chemistry.

Calciilus ot trigonometrical functions

This is tovered in Chapters 4 and 5 and also in Chapter 8 if you are studying
Ryt Mathematics 3. Proofs of the results depend on using either the compound-
angle formulae or the factor formulae which are derived from them.

You will see from this that the compound-angle formulae are important in the
development of the subject. Some people learn them by heart, others think it is
safer to look them up when they are needed. Whichever policy you adopt, you
should understand these formulae and recognise their form. Without that you
will be unable to do the next example, which uses one of them in reverse.
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EXERCISE 3B

SOLUTION

Using this, and replacing ¢ by 30, gives
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Simplify cos6 cos 30 — sin 0'sin 36.

Y
N

The formula which has the same pattern of coscos — sinsin is

cos(0 + @) = cosOcosgp —sinfsing

gg as12409x3

cos 0 cos 360 — sin@sin 360 = cos(0 + 30)
=cos46

Use the compound-angle formulae to write the following as surds.

(i) sin75°=sin(45° + 30°) (ii) cos135° = cos(90° + 45°)
(iii) tan 15° = tan(45° — 30°) (iv) tan75° = tan(45° + 30°)

Expand each of the following expressions.

(i) sin(@ + 45°) (ii) cos(6 —30°) (iii) sin(60°—0)
(iv) cos(26 + 45°) (v) tan(6 + 45°) (vi) tan(0 —45°)

Simplify each of the following expressions.

(i) sin26 cos¢ —cos20sin6
(i) cos¢cos7¢ —singsin7¢
(iii) sin 120°cos60° + cos 120°sin 60°

(iv) cosfcosO —sinfsin6
Solve the following equations for values of 6 in the range 0° < 6 < 180°.

(i) cos(60°+ 60)=sin6

(ii) sin(45°—-0) = cos6

(iii) tan(45° + @) = tan(45° - 0)
(iv) 2sin@ = 3 cos(0 — 60°)

(v) sinf = cos(6 + 120°)

Solve the following equations for values of 6 in the range 0 < 6 < m.
(When the range is given in radians, the solutions should be in radians, using
multiples of T where appropriate.)

(i) sin(0+ %) = cosO

(i) 2cos(0 - %) = cos(@ + %)

.
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6 Calculators are not to be used in this question.
The diagram shows three points L(-2, 1), M(0, 2) and N(3, —2) joined to form
a triangle. The angles a and 8 and the point P are shown in the diagram.

YA

(i) Show that sina = % and write down the Xalue of cosa.
(ii) Find the values of sin 8 and cos ﬂ
(iii) Show that sin ZLMN =
(iv) Show that tan LLNM K
@ [MEI]

7 (i) Show that thNation

sin ) =2cos(x+ 60°)
cag@%n in the form
3\/3)sinx = COSX.
“Hence solve the equation

sin(x+ 30°) = 2cos(x+ 60°),

for —180° < x < 180°.
[Cambridge International AS & A Level Mathematics 9709, Paper 2 Q4 November 2008]

WWW. yout ube. cont megal ect ur e

Page 69 of 353



what sapp: +92 323 509 4443, enmil: negal ecture@mail . con
8 (i) Show that the equation

tan(45° + x) —tanx=2
can be written in the form
tan’x+ 2 tanx—1=0.
(i) Hence solve the equation
tan(45° + x) — tanx = 2,

giving all solutions in the interval 0° < x < 180°.

[Cambridge International AS & A Level Mathematics 9709, Paper 3 Q5 November 2007]
9 The angles & and 3 lie in the interval 0° < x < 180°, and are such that
tang=2tanf and tan(a+p)=3.

Find the possible values of & and 3.
[Cambridge International AS & A Level Mathematics 9709, Paper 32 Q4 November 2009]

10 (i) Show that the equation tan(30° + 6) = 2 tan(60° — 6) can be written in
the form

tan20 + (6V3)tanf —5=0.
(ii) Hence, or otherwise, solve the equation
tan(30° + 0) = 2tan(60° — 0),

for 0° < 6 < 180°.
[Cambridge International AS & A Level Mathematics 9709, Paper 3 Q4 June 2008]

Double-angle formulae

(© Asyou work through these proofs, think how you can check the results.

Is a check the same as a proof?

Substituting ¢ = 0 in the relevant compound-angle formulae leads immediately
to expressions for sin 26, cos 26 and tan 26, as follows.

(i sin(f + ¢) =sinfcos¢ + cosOsing
When ¢ =6, this becomes
sin(0 + 0) =sinfcosO + cosOsinb

giving sin260 = 2sin6cos0.

Y
N

sjenuuioy ajbue-ajqnoq

o
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(i) cos(0 +¢)=cosOcos¢p —sinfsing
When ¢ =6, this becomes
cos(0 + 0) = cosBcosO —sinfsinb
giving cos 20 = cos? 0 —sin? 6.

Using the Pythagorean identity cos?6 + sin?6 = 1, two other forms for cos26 can
be obtained.

c0s20 = (1 —sin%6) —sin?0O = c0s20=1-2sin’6
c0s20=co0s?0 — (1 —cos?0) =  cos20=2cos?0-1

These alternative forms are often more useful since they contain only one

trigonometrical function. @

G tan(@+ @) = M O+¢) = 9&@

—tanftan¢

When ¢ = 6, this becomes
.
tan0 + tan 0
an(f +6) = o <

“1-tanftan O &

giving tan20= % & # 45°, 135° ...

Uses of the double e formulae
€ In modelling sj \
You will meet %mns, such as that below, where using a double-angle formula

not only to write an expression more neatly but also thereby allows
you to i ret its meaning more clearly.

u

a R

S

ground horizontal distance

Figure 3.5
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When an object is projected, such as a golf ball being hit as in figure 3.5, with
speed u at an angle « to the horizontal over level ground, the horizontal distance
it travels before striking the ground, called its range, R, is given by the product of

2usina

the horizontal component of the velocity u cos a and its time of flight 9

o

R= 2usina cosa ]

- T

g 3

. . . . . ®
Using the double-angle formula, sin 2a = 2 sin & cos r allows this to be written as a
o

R = Wsin2a g

g 3

c

Y

(]

Since the maximum value of sin 2 is 1, it follows that the greatest value of the

2
range Ris ”E and that this occurs when 2a = 90° and so a = 45°. Thus an angle of

projection of 45° will give the maximum range of the projectile over level ground.

(This assumes that air resistance may be ignored.)

In this example, the double-angle formula enabled the expression for R to be
written tidily. However, it did more than that because it made it possible to find
the maximum value of R by inspection and without using calculus.

In calculus

The double-angle formulae allow a number of functions to be integrated and you
will meet some of these later (see page 125).

The formulae for cos 26 are particularly useful in this respect since
cos20=1-2sin’6 = sin29=%(l—c0520)

and
cos20=2cos?’0-1 = c0520=%(1 + co0s20)

and these identities allow you to integrate sin*6 and cos? 6.

In solving equations

You will sometimes need to solve equations involving both single and double
angles as shown by the next two examples.

Solve the equation sin 26 = sin6 for 0° < 6 < 360°.

SOLUTION Be careful here: don’t
20 =sind P

= 2sinfcos 6 =sinf

=  2sinfcosf—sinf =0

= sinf(2cosf—-1) =0

= sinf=0 or cos@z%
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The principal value is the
one which comes from
your calculator.

sinf=0 = 6 =0° (principal value) or 180° or 360° (see figure 3.6)

Figure 3.6

cosf = % = 0 =60° (principal value) or 300° (see ﬁ@§)

Figure 3.7

The full set of r

When an

the m

EXAMPLE 3.5

e 2 + cos20 =sinf for 0 < 6 < 2n. (Notice that the request for 0 < 6 < 2,
i.e. in radians, is an invitation to give the answer in radians.)

SOLUTION

Using cos20 = 1 — 2 sin? 0 gives
2+ (1 -2sin%0) =sinh

=

=

or

WWW. yout ube. cont megal ect ur e

Y

y=sinf

/

180\/3600 '6

. O

60° \\Q}/ 3000 360° 0

<

@PW = 0 = 360°is 6 =0°, 60° 180°, 300°, 360°.

S

ioff contains cos 26, you will save time if you take care to choose
stitable expansion.

This is the most
suitable expansion since
the right-hand side

contains sin 6.

2sin’6 + sinf -3 =0
(2sin@ + 3)(sinf—1) =0

= sinf= —% (not valid since =1 < sinf < 1)

sinf=1
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EXERCISE 3C

Figure 3.8 shows that the principal value 6 = g is the only root for 0 < 6 < 2m. P 2

1 ,,,,,,,,,

T
[SIEN EEEE
a
<
a
<Y
D€ 9s1949x3

Figure 3.8

1 Solve the following equations for 0° < 6 < 360°.

(i) 2sin260 = cos6 (ii) tan20 =4tan6
(iii) cos26 + sinf =0 (iv) tanOtan20 =1
(v) 2cos20=1+ cosf

2 Solve the following equations for -t < 0 < m.

(i) sin20=2sinf (ii) tan260 =2tanf
(i) cos260 —cos0=0 (iv) 1 + cos20 =2sin%60
(v) sin460 = cos26

Hint: Write the expression in part (v) as an equation in 26.

3 By first writing sin 30 as sin(20 + 0), express sin 30 in terms of sin6.
Hence solve the equation sin36 = sinf for 0 < 6 < 2m.

4 Solve cos30=1—3cos6 for 0° < 6 < 360°.

5 Simplify %9 .

6 Express tan 360 in terms of tan6.

2
7 Show that w = cos26.
1+ tan*0

8 (i) Show that tan (% + G)tan(% - 9) =1

(ii) Given that tan 26.6° = 0.5, solve tan8 = 2 without using your calculator.
Give 6 to 1 decimal place, where 0° < 6 < 90°.

9 (i) Sketch on the same axes the graphs of
y=cos2x and y=3sinx—1 for 0=<x<2m.

(ii) Show that these curves meet at points whose x co-ordinates are solutions
of the equation 2sin®x+ 3sinx—2=0.

(i) Solve this equation to find the values of x in terms of 7 for 0 < x < 2m.

[MEI] 65
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10 (i) Prove the identity
cos46 + 4 cos 20 = 8 cos*O — 3.
(ii) Hence solve the equation
c0s40 + 4 cos260 =2,

for 0° < 6 < 360°.
[Cambridge International AS & A Level Mathematics 9709, Paper 3 Q6 June 2005]

11 (i) Prove the identity cosec 20 + cot 20 = cot6.
(ii) Hence solve the equation cosec26 + cot 20 = 2, for 0° < 6 < 360°.
[Cambridge International AS & A Level Mathematics 9709, Paper 3 Q3 June 2009]

12 It is given that cosa= g, where 0° < a < 90°. Showing working and
without using a calculator to evaluate 4,

(i) find the exact value of sin(a — 30)°, g’&_‘o

(ii) find the exact value of tan 24, and hence fi e exact value of tan 3a.

[Cambridge International AS & @elMathematics 9709, Paper 32 Q3 June 2010]

The forms rcos(9 = a), rsin(@ = a) &

Another modification of the und-angle formulae allows you to simplify
expressions such as 4sinf @ 0 and hence solve equations of the form

asin® + bcosd =c.

To find a single fx%ﬂion for 4sin@ + 3 cos6, you match it to the expression

r(sin@cosa + cos6 sina).

This is Hedquse the expansion of rsin(6 + &) has sinf in the first term, cosf in
the second term and a plus sign in between them. It is then possible to choose
priate values of rand .

4sin@ + 3cosO = r(sinfcosa + cosBsina)
Coefficients of sinf: 4 =rcosa
Coefficients of cosf: 3 =rsina.

Looking at the right-angled triangle in figure 3.9 gives the values for rand «.

The sides, 4 and 3, come
from the expression
4sinf + 3 cosh.

Figure 3.9
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In this triangle, the hypotenuse is V42 + 3% = 5, which corresponds to rin the
expression above.

The angle « is given by
sina = g and cosa = % = a=36.9°
So the expression becomes
4sin@ + 3cos@ =5sin(6 + 36.9°).
The steps involved in this procedure can be generalised to write

asin® + bcos 0 =rsin(0 + a)

where

. b
r=+a?+b? sing=-——2__ -1 cosq =—24—=14

The same expression may also be written as a cosine function. In this case,
rewrite 4sin@ + 3 cosf as 3 cos + 4sinf and notice that:

(i) The expansion of cos(6 — ) starts with cos 6 ... just like the expression
3cos0 + 4sin6.

(ii) The expansion of cos(f — f3) has + in the middle, just like the expression
3cos 6 + 4sin6.

The expansion of rcos(6 — f3) is given by
rcos(6 —B) = r(cosB cosf + sinf sinf).

To compare this with 3 cos 6 + 4sin6, look at the triangle in figure 3.10 in which

r=v3+4>=5 cosf=13 sinB =4 = B =53.1°

5 5

r 4

Figure 3.10
This means that you can write 3 cos6 + 4sin@ in the form

rcos(@ —f3) = 5cos(0 —53.1°).

Y
N

(0 = g)uis 4 ‘(0 ¥ g)SO9 4 SWI0} YL

Ca.
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The procedure used here can be generalised to give the result

acos 0 + bsin@ = rcos(60 —a)

where

a .
r=va®+b? cosa =", s1na=l;7.

Note

The value of r will always be positive, but cos @ and sina may be positive or
negative, depending on the values of a and b. In all cases, it is possible to find an
angle a for which -180° < a < 180°.

You can derive alternative expressions of this type based on other compound-
angle formulae if you wish & to be an acute angle, as is d(@[he next example.

(i) Express 35in6 - cosf in the form rsin(6 —«a Q r>0and0<a< %
(ii) State the maximum and minimum values of gin@ cosf.
(iii) Sketch the graph of y = V3sinf - co 0@6 <0 =2m.
(iv) Solve the equation V3sin6 - co&

SOLUTION c&

(i) rsin(@—a) = r(sin@ c@— cosfsina)
= (rN)sinG — (rsina)cos@

Comparin%&tb 3sin6 - cos, the two expressions are identical if

for 0 <0 < 2m.

rc and rsina = 1.

Froin, tlie triangle in figure 3.11

*r=+1+3=2 and tan(:z—L = q==1 ¢
N 6 73
) J3sin0 — cosf = 25in(0— %) Figure 3.11

(ii) The sine function oscillates between 1 and —1, so 2 sin(G - %) oscillates
between 2 and 2.

Maximum value =2
Minimum value = 2.
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(iii) To sketch the curve y=2 sin(@ - g), notice that

Y
N

e Iitisa sine curve

o its yvalues go from -2 to 2
@ it crosses the horizontal axis where 6 =

7 131
)6)

NE
o

The curve is shown in Figure 3.12.

(0 = g)uis 4 ‘(0 ¥ g)SO9 4 SWI0} YL

Figure 3.12

(iv) The equation V3sin6 - cosf =1 is equivalent to

. T _
251n(9—6) 1

D [—

Let x= (0 — g) and solve sinx =

Solving sinx = % gives x= % (principal value)

or X=T —% = S%E (from the graph in figure 3.13)
giving 0=§+%=§ or 6:5%‘4-%:75-

o
sNE]

a

| I
SNE]

<Y

Figure 3.13

The rootsin 0 <0 < 2w are @ =§ and T.

.
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A Always check (for example by reference to a sketch graph) that the number
of roots you have found is consistent with the number you are expecting.
When solving equations of the form sin(6 — ) = ¢ by considering sinx = ¢, it is
sometimes necessary to go outside the range specified for 6 since, for example,
0<60<2misthesameas—-a < x<2n-a.

Using these forms

There are many situations which produce expressions which can be tidied
up using these forms. They are also particularly useful for solving equations
involving both the sine and cosine of the same angle.

The fact that acos@ + bsin0 can be written as rcos(6 an illustration of the
fact that any two waves of the same frequency, wht, eir amplitudes, can be

added together to give a single combined wave, als&o? the same frequency.

.
EXERCISE 3D 1 Express each of the following in the ﬁr@os(@ —a), where r > 0 and

0° < a<<90°. 0
i (ii) 20cosf + 21sinf

(i) cosO +sinf &
(iii) cosf + \/3sin6 C) (iv) V5cosf + 2sin6
2 Express each of tle\fol g in the form rcos(0 + ), where r > 0 and

<a<ZT
0<a 5 2
(i) cosf— (i) V3c0s0 —sinb
3 Expr of the following in the form rsin(6 + «), where r > 0 and
0° < 90°.
%inf + 2 cosf (ii) 2sinf + J5cos6
Express each of the following in the form rsin(6 — ), where r > 0 and
b
<a< >
(i) sin6 - cos6 (ii) V7sinf — V2cos6

5 Express each of the following in the form rcos(6 — a), where r > 0 and
-180° < a < 180°.

(i) cosO— \/gsin9 (i) 2\/EC089 — 2\/Esin9
(iii) sin@ + \/ECOSO (iv) 5sinf + 12 cos6
(v) sinf — \/ECOSG (vi) \/Esine - \/Ecose
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6 (i) Express 5cosf — 12sin6 in the form rcos(6 + @), where r > 0 and
0° < a <90°.

Y
N

(ii) State the maximum and minimum values of 5cosf — 12sin6.
(i) Sketch the graph of y=5cos6 — 12sin6 for 0° < 6 < 360°.

(iv) Solve the equation 5cos6 — 12sinf =4 for 0° < 6 < 360°. E

8

7 (i) Express 3sinf — J3cos6 in the form rsin(6 — «), where r > 0 and @
0<a<§ &

10

(i) State the maximum and minimum values of 3sin6 — /3 cos@ and the
smallest positive values of 0 for which they occur.

(iii) Sketch the graph of y=3sin6 — V3cos6 for 0 < 6 < 2.
(iv) Solve the equation 3sin6 — V3cos0 =3for 0 < 6 < 2r.

(i) Express 2sin26 + 3 cos 26 in the form rsin(26 + &), where r > 0 and
0° <a <90°.

(i) State the maximum and minimum values of 2 sin 26 + 3 cos 260 and the
smallest positive values of 6 for which they occur.

(iii) Sketch the graph of y =25in26 + 3 cos 26 for 0° < 6 < 360°.

(iv) Solve the equation 2sin26 + 3 cos26 =1 for 0° < 6 < 360°.

(i) Express cos@ + J25in6 in the form rcos(0 —a), where r > 0 and

0° <a <90°.
(i) State the maximum and minimum values of cos@ ++/2sin6 and the

smallest positive values of 6 for which they occur.
(iii) Sketch the graph of y=cos6 + J25in6 for 0° < 6 < 360°.
(iv) State the maximum and minimum values of

1
3+ cosO+/2sind

and the smallest positive values of 6 for which they occur.

The diagram shows a table jammed in a corridor. The table is 120 cm long
and 80 cm wide, and the width of the corridor is 130 cm.

(i) Show that 12sin6 + 8 cosf = 13.

(ii) Hence find the angle 8. (There are two answers.)

A

80cm

130cm

120cm

Y 0 71
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11

12

13
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(i) Use a trigonometrical formula to expand cos(x + ).

(i) Express y=2cosx— 5sinx in the form rcos(x + @), giving the positive
value of rand the smallest positive value of a.

(iii) State the maximum and minimum values of y and the corresponding
values of x for 0° < x < 360°.

(iv) Solve the equation

2cosx—5sinx=23, for(0° < x < 360°.
[MEI]

(i) Find the value of the acute angle & for which
5cosx—3sinx= \/icos(x+ a)
for all x.
Giving your answers correct to 1 decimal place, @
(ii) solve the equation 5cosx— 3 sinx =4 for 0° <© 60°

(i) solve the equation 5cos2x—3sin2x=4 fo@\ X < 360°.
[MEI]

(i) Find the positive value of R and th@té angle a for which

6cosx+ 8sinx= Rcos :SQ)
1

(ii) Sketch the curve with eﬁt
y=6cosx+ SSQ , Tor 0° < x =< 360°.
Mark your axes y and indicate the angle « on the x axis.

(iii) Solve the ejN)n

8sinx=4, for0°=< x =< 360°.

(iv) So %uation
8cosf + 6sinf =4, for 0° <0 < 360°.

‘the diagram below, angle QPT = angle SQR = 6, angle QPR =@, PQ = g,
QR = b, PR = ¢, angle QSR = angle QTP =90°, SR=TU.

[MEI]

(i) Show that angle PQR =90°, and write down the length of cin terms of
aand b.

(i) Show that PU may be written as acosf + bsin@ and as ccos(0 — a).
Write down the value of tan« in terms of a and b.
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(i) In the case when a=4, b= 3, find the acute angle a.

(iv) Solve the equation

4cosf +3sinf=2 for 0°=<06 =< 360°.
[MEI]
15 (i) Express 3 cosx+ 4sinxin the form Rcos(x—a), where R > 0 and
0° < a < 90°, stating the exact value of R and giving the value of
correct to 2 decimal places.

as as1a4ex3g

(ii) Hence solve the equation
3cosx+4sinx=4.5,
giving all solutions in the interval 0° < x < 360°.
[Cambridge International AS & A Level Mathematics 9709, Paper 22 Q6 November 2009]

16 (i) Express 5cosf — sin6 in the form Rcos(6 + «), where R > 0 and
0° < a < 90°, giving the exact value of R and the value of & correct to
2 decimal places.

(ii) Hence solve the equation
5cos6 —sinf =4,

giving all solutions in the interval 0° < 6 < 360°.
[Cambridge International AS & A Level Mathematics 9709, Paper 2 Q5 June 2008]

17 (i) Express 7cos8 + 24sin@ in the form Rcos(6 — a), where R > 0 and
0° < a < 90°, giving the exact value of R and the value of & correct to
2 decimal places.

(ii) Hence solve the equation
7cosf +24sin6 =15,

giving all solutions in the interval 0° < 6 < 360°.
[Cambridge International AS & A Level Mathematics 9709, Paper 3 Q4 June 2006]

18 By expressing 8 sinf — 6 cos6 in the form Rsin(6 — &), solve the equation
8sinf —6¢cosf =7,

for 0° < 6 < 360°.
[Cambridge International AS & A Level Mathematics 9709, Paper 3 Q5 November 2005]
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JNVESTIGATION
P2

The simplest alternating current is one

m which varies with time f according to

> I= Asin2nft,

?

£ where f1is the frequency and A is the

c

e maximum value. The frequency of

F the public AC supply is 50 hertz

(cycles per second).

Investigate what happens when

two alternating currents
A,sin2nftand A, sin(2xft + ) with
the same frequency f but a phase
difference of & are added together.

The previous exercises have each concentrated on just one of the many
trigonometrical techniques which you will to apply confidently. The
following exercise requires you to ideb&which technique is the correct one.

EXERCISE 3E 1 Simplify the following. \
(i) 2sin360cos360 @ (ii) cos?30 —sin?30
(i) cos®30 + sin? (ivi 1-2sin? (g)

(vu) sm 29 (viii) cos20 — 2 cos?6

(v) sin(6 -« f@* cos(@—a)sina  (vi) 3sinfcosO

2 Expr

“(cos x— sin x)? in terms of sin 2x
i) cos*x—sin*xin terms of cos2x

i) 2 cos?x — 3sinx in terms of cos2x.

3 Prove that

1—cos20 _ tan6

(i)

1+cos20
(ii) cosec20 + cot20 = cotf
4t(1—t?
(iii) tan46 = (—)4 where t=tan®6.

1-6t2+t¢
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4 Solve the following equations.

Y
N

(i) sin(6 +40°)=0.7 0° <0 < 360°

(i) 3cos’6 + 5sinf—-1=0 0° <0 =< 360° m
(i) 2cos(0—§)=l nm<O<n

(iv) cos(45°—0)=2sin(30°+6) -180° =<6 =< 180°

(v) cos260 + 3sinf=2 0=60=<2m

(vi) cosf + 3sinf =2 0° <0 =< 360°

(vii)tan?6 —3tanf -4 =0 0° <6 =<180°

® The general solutions of trigonometrical equations
The equation tan@ = 1 has infinitely many roots:

..., —315°, —135°, 45°, 225° 405° ... (in degrees)

2 S S

e 1 1 4 4 (in radians).

Only one of these roots, namely 45° or %, is denoted by the function tan™'1.

suonenbe jesl3owouohil} Jo suoinjos |esaush ay |

This is the value which your calculator will give you. It is called the principal value.

The principal value for any inverse trigonometrical function is unique and lies
within a specified range:

T -1 T
——<tan" x < =<
2 2

0<cos'lx<m.

It is possible to deduce all other roots from the principal value and this is shown
below.

To solve the equation tan6 = ¢, notice how all possible values of 6 occur at
intervals of 180° or m radians (see figure 3.14). So the general solution is

O=tan"'c+nt neZ (in radians).

SIE
S

Figure 3.14

tan~!¢
principal value
75
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The cosine graph (see figure 3.15) has the y axis as a line of symmetry. Notice
how the values +cos™ ¢ generate all the other roots at intervals of 360° or 27. So
the general solution is

O=x*cosic+2nm n€ Z (inradians).

YA
y=cosf
YA U AN I N A N/ T
—450°/ '+ \-270°  -90°/ \90° 270°/ 1\ 450° 6309/ ‘
[sn sm 0
2 2 2
Figure 3.15 principal value

or the sine graph is 0 = g,

Now look at the sine graph (see figure 3.16). As for th@l@graph, there are
two roots located symmetrically. The line of symngetr

which generates all the other possible roots. This gives rise to the slightly more
complicated expressions @ ¢

0= gi(g—sin‘lc) +2nn0&
or 0=(2n+%)ni(§—sin&) nelz.
You may, however, find i@ier to remember these as two separate formulae:

0=2nn+si2\ or 6=02n+1)n—-sin'c

YA

ACTIVITY 3.3

(180° —sin~! ¢)
or (T —sin"!¢)

sin"le
principal value

Show that the general solution of the equation sinf = ¢ may also be written

O=nn+ (-1)"sin"'c
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1 1 1
1 secd=——; cosecO=——; cotl=——
cosf ¢ sin6 tan@

2 tan?0 + 1 =sec?d; 1+ cot? = cosec?0
3 Compound-angle formulae

e sin(f + ¢) =sinfcos¢p + cosOsing

sjuiod Aay|

e sin(f —¢) =sinfOcos¢p — cosOsing
® cos(0+ ¢)=cosOcos¢p —sinfsing
® cos(0—¢)=cosbcosp + sinfsing

o tan(f +¢) = % (6 +¢) #90°, 270°, ...

_ tanf—tang

o tan(0-¢)= tanOtan¢

(0 —¢) #90°, 270°, ...

4 Double-angle and related formulae
® sin20=2sin6cosH
® c0520=cos?’0 —sin*6=1—-2sin’60=2cos’0 — 1

2tan6

g 0#45% 135

e tan20=
° Sin29=%(1—C0829)
° c0520=%(1+c0520)

5 The r, @ formulae

® asinf + bcosO =rsin(0 + a)
where r=+a? + b?

® asinf — bcosO =rsin(f —a)

a

cosa =

® acosf + bsinf =rcos(6 —a) b
sina = 7

® acosf —bsinf =rcos(0 + )
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Differentiation

v
N

A mathematician, like a painter or poet, is a maker of patterns. If his
patterns are more permanent than theirs it is because they are made
with ideas.

Differentiation

G.H. Hardy

The product rule

Figure 4.1 shows a sketch of the curve of y=20x(x— 1)°.

O

YA

R W
Figure 4.1 @b

If you wanted to f@ gradient function, g_y, for the curve, you could expand
X
the right—hand% en differentiate it term by term — a long and cumbersome
process!
There are other functions like this, made up of the product of two or more
si le‘r functions, which are not just time-consuming to expand — they are
sible to expand. One such function is

y=@x-1x+1°  (forx>1).

Clearly you need a technique for differentiating functions that are products of
simpler ones, and a suitable notation with which to express it.

The most commonly used notation involves writing

y=uv,

where the variables u and v are both functions of x. Using this notation, j_y is

given by x
dy _ dv N du

dx  Mdx " Vaxe

This is called the product rule and it is derived from first principles in the next

section.
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The product rule from first principles

A small increase dx in x leads to corresponding small increases du, dvand dy in 1,
vand y. And so

y+ 0y = (u+du)(v+ ov)
=uv+ vdu+ udv+ oudw.

Since y = uv, the increase in y is given by

Oy=vou+ udv+ dudv.

Dividing both sides by dx,

Sy _ du, v dv
Sx va+u6—+5u5x.

In the limit, as 6x — 0, so do 6u, dvand dy, and

Su_du Sy _dv 4 8y dy
5x%dx Sx_)dx and Sx_)dx'

The expression becomes

dy du tu dv.

dx dx dx

Notice that since 61 — 0 the last term on the right-hand side has disappeared.

Given that y= (2x+ 3)(x? - 5), find ?1_)’ using the product rule.
x

SOLUTION
y=(2x+3)(x*-5)

Let u=2x+3and v=x%—5.

du dv
Then == I =2and ==~ Ix =2x.

Using the product rule, dy _ d” +u dv

dx dx dx
=(x?-5)x2+(2x+3) X 2x

=2(x2 =5+ 2x%+ 3x)
=2(3x%+3x-5)

Note
In this case you could have multiplied out the expression for y.
y =2x3+3x2—10x— 15
4Y — x2 + 6x— 10
dx
=2(3x2+3x—5)

P2

ajnJ 3onpoud sy

o
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EXAMPLE 4.2 Differentiate y = 20x(x— 1)°.

P2

m SOLUTION

Let u=20xand v=(x—1)°.

c

o

g Then 4% = 20 and 4 = 6(x— 1)* (using the chain rule).
g dx dx

[

s i dy _ du, dv

£ Using the product rule, ax = Vds + e

=(x—=1)°%20+20xx 6(x—1)°
=20(x—1)>x(x—1)+20(x—1)°> X 6x
=20(x—1)5[(x—1) + 6x] \

=20(x—1)>(7x—1) 20x—1)Sisa
@ common factor.

The factorised result is the most useful form for th€Solution, as it allows you to

find stationary points easily. You should always try 16 factorise your answer as
much as possible. Once you have used the @utt rule, look for factors straight
away and do not be tempted to multipl\ou :

)

The quotient rule \
In the last section, you m echnique for differentiating the product of two
functions. In this sec\ﬁnfyou will see how to differentiate a function which is the
quotient of two si%; unctions.
As before, y y identifying the simpler functions. For example, the function
- 21 (for x # 2)
can hewwritten as y= % where u= 3x+ 1 and v= x — 2. Using this notation, j_y is
n by Y x
du _ dv
dy _ Vdx " "dx
dx v?

This is called the quotient rule and it is derived from first principles in the
next section.
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EXAMPLE 4.3
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The quotient rule from first principles

A small increase, dx in x results in corresponding small increases 61, dv and 6y in
u, vand y. The new value of y is given by

u+0u

y+8y:v+8v

and since y = Y, you can rearrange this to obtain an expression for 8y in terms of
v
uand v.

_u+du_u
v+Ov v

_ v(u+0u)—ulv+9dv)
- v(v+8v)

_uv+vdu—uv—udy
v(v+dv)

_ vdu—udv
v(v + 0v)

Dividing both sides by dx gives
du _ dv

Ve —Ug

dy _ "8x o«
ox  v(v+0ov)

To divide the right-hand
side by dx you only divide

the numerator by 6x.

In the limit as dx — 0, this is written in the form you met on the previous page.

du_ dv
dy _ Ydx "dx
x v?

Verify that the quotient rule gives j_y correctly when u = x'%and v=x".
x

Given that y = 3x_—|—21) find 211_)/ using the quotient rule.
X — X

SOLUTION

Letting u=3x+ 1 and v=x— 2 gives

du dv
o =3 and dle.d ;
u v
‘ . dy B Va - Ma
Using the quotient rule, - 2
_(x=2)x3-(Bx+1)x1
(x—2)
_3x—-6-3x—-1
(x—2)°
_ 7
(x=2)°

v
N

ajnu jusnponb ay)

I
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P 2 EXAMPLE 4.4 Given that y = ﬂ, find g_y using the quotient rule.
x

3x—1
m SOLUTION

Letting = x>+ 1 and v=3x— 1 gives

c
o
5 du _ dv _
.‘é dx = 2% and de =2
[
o du  dv
£ Vet —us
a Using the quotient rule, % = M
v
_Bx-1x2x—(x*+1)x3
(3x —1)?

_6x*—2x—3x* -3
Gx—1p (Q
_3x*—2x-3 O
(3x —1)? c)

EXERCISE 4A 1 Differentiate the following using the pro@ fule or the quotient rule.
i y=(x*=1)(x"+3) 0 (i) y=x33x2+4x—-7)
T — 2 4 i = —zx
(iii) y=x*(2x+ 1) \ (iv) y 3x—1
3
v) y= Zx @0 i) y=Q2x+1)*(3x*—4)
x“+1
o 2x—3 o Xx—2
vy = e L0 Wit Y = v 3
(iX) }/ = %
2 The alagram shows the graph of y= ﬁ
S
Find 4.
. x . YA
Find the gradient of the
curve at (0, 0), and the
equation of the tangent
at (0, 0).
(iii) Find the gradient of the 1

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

curve at (2, 2), and the

equation of the tangent !

at (2, 2). 0 1
(iv) What can you deduce !

about the two tangents?
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Given that y= (x+ 1)(x—2)?

v
N

(i) find dy
X

(ii) find any stationary points and determine their nature
(iii) sketch the curve.

x—3

Given that y=

Vv 9s1240x3

@ find ¥
dx

(i) find the equation of the tangent to the curve at the point (6, 1.5)
(i) find the equation of the normal to the curve at the point (5, 2)

(iv) use your answer from part (i) to deduce that the curve has no stationary
points, and sketch the graph.

The diagram shows the graph of y = , which is undefined for x < 0 and

2x
Jx-1
x=1. P is a minimum point.

YA

©)
=Y

@ Find .
dx

(i) Find the gradient of the curve at (9, 9), and show that the equation of the
normal at (9, 9) is y = —4x+ 45.

(i) Find the co-ordinates of P and verify that it is a minimum point.

(iv) Write down the equation of the tangent and the normal to the curve at P.

(v) Write down the point of intersection of the normal found in part (ii) and
(a) the tangent found in part (iv), call it Q
(b) the normal found in part (iv), call it R.

(vi) Show that the area of the triangle PQR is %.

-
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6 The diagram shows the graph of y = X2 —2x-5
2x+3

.

YA

L
n
o
=

G Find .
dx
(ii) Use your answer from part (i) to find any stati oints of the curve.

(iii) Classify each of the stationary points and use@lju us to justify your answer.

2

7 A has th ti =_X

curve nas (] equa 10N }/ Zx 1 @ *
@ Find Y.
X

Hence find the co-ordinates @ stationary points on the curve.
. d?
(i) You are given that £ &2—3 .
dx 2x+1)

Use this informati determine the nature of the stationary points in

part (i). \
(b, [MEI]

8 The diagr s part of the graph with the equation y = xvV 9 — 2x?.
It cros x axis at (a, 0).
YA
.
0 (a, 0) v

(i) Find the value of a, giving your answer as a multiple of V2.
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(i) Show that the result of differentiating V9 — 2x? is ——2x
9—2x?

Hence show that if y= x V9 — 2x? then
dy _ 9-4x?
dx  Jo_ox2’

(iii) Find the x co-ordinate of the maximum point on the graph of y=xVv9 — 2x%.
Write down the gradient of the curve at the origin.
What can you say about the gradient at the point (a, 0)?

Differentiating natural logarithms and exponentials

In Chapter 2 you learnt that the integral of Lisnx It follows, therefore, that the
x

differential of In xis 1.
x

_ dr_1
So y=lhx = - x

The differential of the inverse function, y = e*, may be found by interchanging

yand x.
dx 1
x=In = ==
Y dy y
dy _ 1 _  _ «
= dx & y =€
dy

Therefore ie" =e*.

dx

The differential of e*is itself e*. This may at first seem rather surprising.

Q The function f(x) (x € R) is a polynomial in x of order n.

So
— n n—1
f(x) = ax"+a_x"'+..+ax+a,

where a ,a__,, ..., ajare all constants and at least a, is not zero.
How can you prove that dif(x) cannot equal f(x)?
x

Since the differential of e* is e, it follows that the integral of e* is also e*.
'[e" dx=e*+c.

This may be summarised as in the following table.

‘
N

sjeiusuodxa pue swyjebo] jeinjeu Buijeinusiagyg

.
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EXAMPLE 4.5

EXAMPLE 4.6
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Differentiation Integration
d

y—)i yHJ.ydx

1 1
Inx— = =——>lInx+c¢

X X
ef——e* ef—— e+

conr

These results allow you to extend very considerably the range of functions which

you are able to differentiate and integrate.

Differentiate y = e>*.

SOLUTION ()

Make the substitution u = 5x to give y = e

Nowj_);ze“zeSx and %zS. &QQ
XN

dy _dy  du
dx ~ du x dx ()
=e*x5 @
= 5¢>% 2\
This result can@:neralised as follows.
dy

¥, = =L =aqe® where ais any constant.
X

By the chain rule,

Thig is an important standard result, and you would normally use it
’atically, without recourse to the chain rule.

Differentiate y = %
e X

SOLUTION
4 — -2
y= eTx =4e

= j—z =4 x(-2¢7%)

=—8

WWW. yout ube. cont megal ect ur e
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EXAMPLE 4.7 Differentiate y = 3e+1).

v
N

SOLUTION

Let u=x*+ 1, then y=3e"

[s]
= dy _ 3¢t = 3¢ and 9% =5y )
du dx )
By the chain rule, gi:
«Q
dy _dy, du :
dx du” dx g
1
=3 x 2x g
= 6xe ¥+ s
)
3
EXAMPLE 4.8 Differentiate the following. )
(-}
i) y=2Ilnx (i) y=In(3x) %
S
]
SOLUTION 2
o
.ody 1 ¢
(i) £ =2x=
dx x
=2
x

(i) Let u=3x,theny=Inu

dy_1_1 du _

= du = u = § and a 3
By the chain rule,
dy _dy  du
dx ~ du” dx
_1
BETR 3
_1
X
Note

An alternative solution to part (ii) is

y=In3x)=In3+Inx = ==0+

@ The gradient function found in part (ii) above for y =In(3x) is the same as that for
y=1In(x). What does this tell you about the shapes of the two curves? For what
values of x is it valid?

o
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EXAMPLE 4.9 Differentiate the following.

(i y=In(x*) i) y=In(x*>+1)

SOLUTION

(i) By the properties of logarithms

y = In(x*)

= 4In(x)
dy 4
A x

(i) Let u=x?>+1,then y=Inu

dy_1_ 1 du _
By the chain rule, O
dy _ dy du C)

dx ~ du " dx .
1 <
=2

X 2x

x“+1 &
_x O
T xr+1 \

If you need to dlfferennaz ssions similar to those in the examples above,

follow exactly the sa\ The results can be generalised as follows.
dy

y_a?x@l !x y=aet= g = e
dy_l _ d_y: ax
y:ln :}a_; }/_e“x:>dx ae
— () f(x d)’ ' X,

n(f(x)):>dx— (x) }/=e<)=>—dx=f(x)ef()

. . Inx
EXAMPLE 4.10 Differentiate y = ~

SOLUTION

Here y is of the form % where u=Inxand v=x

du _1 ;nq v -4,

dx ~ x ¢ dx
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By the quotient rule,

du dv
dx dx
2

V

dy "

dx ~
1

xX -—1xInx

. x

2
_1-Inx
)

EXERCISE 4B 1 Differentiate the following.
(i) y=3lnx
(iii) y= In(x )

_1nll
(v) y—ln(x)

(vii) y = x? In(4x)

(ix) y=InvVx*—-1

2 Differentiate the following.
(i) y=3e*
(iii) y=e*

(v) y=xe¥

(vii) y=

Knowing how much rain has fallen in

emai | :

nmegal ecture@mi |l . con

v
N

gy es12409x3

(i) y=In(4x)
(iv) y=In(x>+1)
(vi) y=xInx
(viii) y= ln(x+1)
X
Inx
W=
(i) y=e?*
(iv) yze(xﬂ)z
(vi) y=2x%>
(viii) y=(e?*+1)°

a river basin, hydrologists are often able

to give forecasts of what will happen to a river level over the next few hours.
In one case it is predicted that the height A, in metres, of a river above its

normal level during the next 3 hours will be 0.12¢

elapsed, in hours, after the prediction.

09t where tis the time

(i) Find %, the rate at which the river is rising.

(i) At what rate will the river be rising after 0, 1, 2 and 3 hours?

4 The graph of y = xe* is shown below.

ey

Fmd &y and &

. )’
(i)
I da?

(i) Find the co-ordinates of the minimum point P.

WWW. yout ube. conl megal ect ur e
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5 The graph of f(x) = xIn(x?) is shown below.

fx) A

=Y

(i) Describe, giving a reason, any symmetries of the graph.

(ii) Find f'(x) and " (x).
(i) Find the co-ordinates of any stationary points. O
i &
6 Given that y= p Q

. dy .
(i) find dx @

(i) find the co-ordinates of any @&ar}l points on the curve

(i) sketch the curve.
7 (i) Differentiate Inx and @x&th respect to x.

The sketch shows the g@l of y=xInxfor 0 <x=<3.

1 L 5
0 2 3 x

(i) Show that the curve has a stationary point (é, - %)

[MEI]
8 The diagram shows the graph of y = xe™ ’)
\
(i) Differentiate xe™. A
(ii) Find the co-ordinates of the point A,
the maximum point on the curve. 0 £
[MEI]
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9 The diagram shows a sketch of the graph of y = f(x), where

v
N

f(x):h]TX (x>0).

YA Q

gy es12409x3

The graph crosses the x axis at the point P and has a turning point at Q.

(i) Write down the x co-ordinate of P.

(ii) Find the first and second derivatives, f'(x) and f"(x), simplifying your
answers as far as possible.

(iii) Hence show that the x co-ordinate of Q is e.
Find the y co-ordinate of Q in terms of e.
Find f"(e), and use this result to verify that Q is a maximum point.

[MEL, part]

1

10 Find the exact co-ordinates of the point on the curve y = xe * at
., d?
which &2 = 0.
dx?
[Cambridge International AS & A Level Mathematics 9709, Paper 2 Q6 November 2008]

11 Itis given that the curve y = (x— 2)e* has one stationary point.

(i) Find the exact co-ordinates of this point.
(ii) Determine whether this point is a maximum or a minimum point.

[Cambridge International AS & A Level Mathematics 9709, Paper 2 Q6 June 2008]
12 The equation of a curve is y = x’e™*,

(i) Show that the curve has a stationary point where x= 3.
(ii) Find the equation of the tangent to the curve at the point where x= 1.

[Cambridge International AS & A Level Mathematics 9709, Paper 22 Q5 June 2010]

or
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Differentiating trigonometrical functions
ACTIVITY 4.2 Figure 4.2 shows the graph of y = sin x, with x measured in radians, together with

the graph of y = x. You are going to sketch the graph of the gradient function for
the graph of y=sin x.

y=sinx

[T SR

Figure 4.2

Draw a horizontal axis for the angles, mar rom —27 to 27, and a vertical axis
for the gradient, marked from —1 to 1, as sh in Figure 4.3.

&P

. N

on EN
Q?'

=Y

2n

[=]
a

Figure
.
, look for the angles for which the gradient of y = sin x is zero. Mark zeros at

ese angles on your gradient graph.

Decide which parts of y = sin x have a positive gradient and which have a negative
gradient. This will tell you whether your gradient graph should be above or below
the x axis at any point.

Look at the part of the graph of y = sin x near x= 0 and compare it with the graph
of y=x. What do you think the gradient of y = sin x is at this point? Mark this
point on your gradient graph. Also mark on any other points with plus or minus
the same gradient.

Now, by considering whether the gradient of y = sin x is increasing or

decreasing at any particular point, sketch in the rest of the gradient graph.
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The gradient graph that you have drawn should look like a familiar graph. What
graph do you think it is?

Sketch the graph of y = cos x, with x measured in radians, and use it as above to
obtain a sketch of the graph of the gradient function of y = cos x.

Is y = x still a tangent of y = sinx if x is measured in degrees?

Activity 4.2 showed you that the graph of the gradient function of y=sinx
resembled the graph of y = cosx. You will also have found that the graph of the
gradient function of y = cos x looks like the graph of y = sin x reflected in the

x axis to become y = —sin x.

Both of these results are in fact true but the work above does not amount to a
proof. Explain why.

Summary of results

d, . d .
a(smx) =cosx a(cosx) =-sinx

Remember that these results are only valid when the angle is measured in radians,
so when you are using any of the derivatives of trigonometrical functions you
need to work in radians.

By writing tan x = %, use the quotient rule to show that

dd—x(tanx) = sec2x where x is measured in radians.
You can use the three results met so far to differentiate a variety of functions
involving trigonometrical functions, by using the chain rule, product rule or

quotient rule, as in the following examples.

v
N

suonauny [esujswouobii}) Bunenpuaiasug

.
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EXAMPLE 4.11 Differentiate y = cos2x.

P2

m SOLUTION

As cos2xis a function of a function, you may use the chain rule.

S du
8 Let u=2x = - =2
E x
p
£ =cosu = d_y =—sinu
E V= du ~

dy _dy, du

dx~ du” dx

=—sinu X 2

=—-2sin2x
With practice it should be possible to do this in your out needing to
write down the substitution. c)

This result may be generalised.

_ dy _ .
y=coskx = dx ksml&

x
Similarly 0

y=sinkx = é&}s kx
and
EXAMPLE 4.12 Differe& x?sin x.

S IION

*

nxis of the form uv, so the product rule can be used with = x? and v=sin x.

du _ dv

I 2x dx = COSX
Using the product rule
dy _ du  dv
dx - Vax TMax
= d—}/:2xsinx+x2cosx
dx
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EXAMPLE 4.13 Differentiate y = e'an*,

SOLUTION

e'¥¥ s a function of a function, so the chain rule may be used.

Let wu=tanx = % =sec’x
dy
=e = ==
J du

Using the chain rule

dy _dy, du
dx du  dx
=e¥sec’x
= efan¥gec? x
EXAMPLE 4.14 Differentiate y = L+sinx
cosx
SOLUTION
L+ SINX i of the form % so the quotient rule can be used, with
08X
u=1+sinx and v=cosx
= du =CoSX and dv =—sinx
dx dx
The quotient rule is
du dv
Ly e
dy _ “dx “dx
dx V2

Substituting for 1 and v and their derivatives gives

dy _ (cosx)(cosx) — (1 + sinx)(=sinx)
dx (cosx)?
_ cos’x +sinx + sin’x
cos’x
1+sinx . .
=— (using sin? x + cos?x=1)
cos® x

= (sec?x)(1 + sinx)

v
N
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EXERCISE 4C 1 Differentiate each of the following.
Pz (i) 2cosx+sinx (ii) tanx+5 (i) sinx— cosx

m 2 Use the product rule to differentiate each of the following.

é (i) xtanx (i) sinx cosx (iii) e*sinx

% 3 Use the quotient rule to differentiate each of the following.

i—', ) % (i) Cosxx (i) TLE%

4 Use the chain rule to differentiate each of the following.
(i) tan(x?+1) (ii) sin2x (iii) In(sin x)

5 Use an appropriate method to differentiate each of the foilqwing.
(i) Vcosx (ii) e“tanx Q in 4x?
. ) sinx d
(iv) ecos2x V) T cosx Q vi) In(tan x)

6 (i) Differentiate y = xcosx. .
(i) Find the gradient of the curve y=x c@at the point where x = .
(i) Find the equation of the tangent'g the curve y = xcos x at the point
where x=T. é

(iv) Find the equation of the &}nal to the curve y = x cos x at the point
where x=T.

2
7 If y=e*cos3x, fi Q% 4y and hence show that
x  dx?

2
dx X [MEJ]
8 Co e function y= e *sinx, where -1 < x < 7.
S ody
Find =%.
. m dx

i) Show that, at stationary points, tanx= 1.
(i) Determine the co-ordinates of the stationary points, correct to
2 significant figures.
(iv) Explain how you could determine whether your stationary points are
maxima or minima. You are not required to do any calculations.
[MEI]
9 The equation of a curve is y= x+ 2 cos x. Find the x co-ordinates of the
stationary points of the curve for 0 < x < 27, and determine the nature of
each of these stationary points.
[Cambridge International AS & A Level Mathematics 9709, Paper 2 Q3 June 2006]
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10 The equation of a curve is y = x + cos 2x. Find the x co-ordinates of the

v
N

stationary points of the curve for which 0 < x <, and determine the nature
of each of these stationary points.

[Cambridge International AS & A Level Mathematics 9709, Paper 3 Q3 November 2005]

11 The curve with equation y = e *sin x has one stationary point for which

0=s=x=m.

(i) Find the x co-ordinate of this point.
(ii) Determine whether this point is a maximum or a minimum point.

[Cambridge International AS & A Level Mathematics 9709, Paper 3 Q4 November 2007]

X

e . . .
12 The curve y= osx’ for —%n <x< %Tc, has one stationary point. Find the

x co-ordinate of this point.

[Cambridge International AS & A Level Mathematics 9709, Paper 3 Q3 November 2008]

Apoidwi psuyap suonouny Gunenuaiapyig

Differentiating functions defined implicitly

All the functions you have differentiated so far have been of the form y = f(x).
However, many functions cannot be arranged in this way at all, for example
x>+ y® = xy, and others can look clumsy when you try to make y the subject.

An example of this is the semi-circle x? + y> =4, y = 0, illustrated in figure 4.4.

YA
2
> By Pythagoras’ theorem,
-2 (0] 2 X 2+ yz =92

Figure 4.4

Because of Pythagoras’ theorem, the curve is much more easily recognised in this
form than in the equivalent y=v 4 — x2,

When a function is specified by an equation connecting x and y which does not
have y as the subject it is called an implicit function.

e & _dy | du o dv, du
The chain rule I = du S dx and the product rule dx(uv) =ug +y o e

used extensively to help in the differentiation of implicit functions.

Ea
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P 2 EXAMPLE 4.15 Differentiate each of the following with respect to x.
m i y? (i) xy (iii) 3x2y3 (iv) siny
c SOLUTION
o
2 G Aoy dy, Ay i
_cé (i) dx(y )= dy(y )x P (chain rule)
g dy
o — =7
£ 2 3x
a
iy L(xy) =Y
(ii) dx(xy) =xgty (product rule)

(iii) %(39@)/3) = 3(x2%(y3) + y3%(x2) (product rule)
= 3(x2 X 3}/2% + 93 x ZX) (chain @
= 3xy2(3x% + Zy) c}

.

(iv) %(siny) = c;l_y (siny) Xj—i & (chain rule)

dy
=(cosy) P \
<

EXAMPLE 4.16 The equation of a curve i@n by y® + xy=2.
(i) Find an expres '&or % in terms of x and y.

(ii) Hence ﬁn%1 adient of the curve at (1, 1) and the equation of the tangent
e

) t}i@
SOLUTI

at point.

r xy=2
dy L &
227 — =
= 3y dx+(xdx+y) 0
dy
24 N _
= Gy+x)3.=-»
= y__—»
dx  3y?+x
. dy 1
(ii) At(l,l),a_ ) .
Substitute x= 1, y =1 into the expression for d_z

= Using y— y, = m(x— x,) the equation of the tangent is (y— 1) = —i(x— 1)
= x+4y-5=0
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(?) Figure 4.5 shows the graph of the curve with the equation y° + xy= 2.

EXAMPLE 4.17

+92 323 509 4443, emnil: negal ecture@nmail . comn

g\

BN
o\

o

Figure 4.5

Why is this not a function?

Stationary points

As before these occur where % =0.
Putting % = 0 will not usually give values of x directly, but will give a

relationship between x and y. This needs to be solved simultaneously with the

equation of the curve to find the co-ordinates.

(i) Differentiate x> + y* = 3xy with respect to x.
(ii) Hence find the co-ordinates of any stationary points.

SOLUTION

odya, dos o d
(i) dx(x)+dx(y)—dx(3xy)

d d
= 3x2+3y2%€ = 3(xd_§:+)’)

. ..d
(ii) At stationary points, AR

dx

Notice how it is not
necessary to find an

d
expression for Ey unless

you are told to.

v
N

Apoidwi psuyap suonouny Gunenuaiapyig
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To find the co-ordinates of the stationary points, solve
2:

X*=y

simultaneousl
X3+ y3=3xy Y

Substituting for y gives

x5+ (x?)® = 3x(x?)

=  xP+x0=3x°
= x0=2x3
= (*-2)=0

= x=0 or x=32
y = x? so the stationary points are (0, 0) and (3/5, Y4

The stationary points are A and B in figure 4.6. O

TA CJ
&,
S

C., .
NS

<Y

2+

(Z}@
O

Fig{@

Types of stationary points

ith explicit functions, the nature of a stationary point can be determined by

2
considering the sign of % either side of the stationary point.
x

EXAMPLE 4.18 The curve with equation sinx+siny=1for0 < x<mn,0 < y < mis shownin
figure 4.7.
7A
n b
>
Figure 4.7 0 LA
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(i) Differentiate the equation of the curve with respect to x and hence find the
co-ordinates of any stationary points.

(i) Show that the points (Tg g) T6£’ %), (%E, 2) and (56n 56n) all lie on the curve.

Find the gradient at each of these points.

What can you conclude about the natures of the stationary points?

SOLUTION

(i) sinx+siny=1

= cosx+(cosy)%=0 @
N dy _ _cosx
dx  cosy

At any stationary point ?1_)’ =0 = cosx=0
X
= x= % (only solution in range)
Substitute in sinx+ siny=1.

Whenng, sinx=1 = siny=0
= y=0ory=m

= stationary points at (%, 0) and (g, n).

i) sin®=1 ginl=1
6 2 6 2
So, for each of the four given points, sinx+ siny = % % =1

Therefore they all lie on the curve.

The gradient of the curve is given by

dy _ _cosx
dx cosy
qoV3  sm_ 3
05§ =30 cosig ==
V3
At(z E) dy__5__,
6’6 dx J3
2
V3
At(E fﬂ) dr__2 _,
6’6/ dx 3
2
3
At(S_TC E) d_y:__zzl
6’6/ dx V3
2
e
At(STc 5—”) r_ 2.,
T6) dx V3

v
N
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EXERCISE 4D
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These results show that
T . .. T . .
(E’ 0) is a minimum (5’ n‘) is a maximum

YA YA

Tt nr _

/.

STES }-
N
=Y

ENERS

SRS

O

O oa
T
cx\:—!-/

These points are confirmed by considering the sketch @e 4.7 on page 100.

1 Differentiate each of the following with respect@.

M y* W x*+y =5 (i) xy+x+y

(iv) cosy v) eU+2 @ (i) xp3

(vii) 2x%y° (viii) x +dnH— 3 (ix) xe’—cosy

(x) x*Iny (i) xﬁ (xii) x tan y — y tan x

2 Find the gradient of the CL@ = 5Inyat the point (0, 1).

3 Find the gradient of th@ve esin* 4 ey = e + 1 at the point (g, g)
4 (i) Find the gr@of the curve x? + 3xy + y*> = x+ 3y at the point (2, —1).

(ii) Hence f%‘ equation of the tangent to the curve at this point.
5 Find @r fhates of all the stationary points on the curve x> + y? + xy = 3.

6 Acu as the equation (x—6)(y+4) =2.

“Find an expression for dy in terms of xand y.

dx
(ii) Find the equation of the normal to the curve at the point (7, -2).

(i) Find the co-ordinates of the point where the normal meets the curve again.

(iv) By rewriting the equation in the form y —a= r—c identify any asymptotes

and sketch the curve.
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7 A curve has the equation y = x* for x > 0.

10

11

12

(i) Take logarithms to base e of both sides of the equation.
(ii) Differentiate the resulting equation with respect to x.

(iii) Find the co-ordinates of the stationary point, giving your answer to
3 decimal places.

(iv) Sketch the curve for x > 0.

The equation of a curve is 3x2 + 2xy + y* = 6. It is given that there are two
points on the curve where the tangent is parallel to the x axis.

(i) Show by differentiation that, at these points, y=—3x.
(ii) Hence find the co-ordinates of the two points.

[Cambridge International AS & A Level Mathematics 9709, Paper 2 Q5 June 2006]

The equation of a curve is x> + y° = 9xy.
dy 3y-—x?
i Show that 3 = #
dx  y*-3x
(ii) Find the equation of the tangent to the curve at the point (2, 4), giving
your answer in the form ax+ by =c.

[Cambridge International AS & A Level Mathematics 9709, Paper 2 Q4 November 2005]

The equation of a curve is x> + y?> — 4xy + 3 = 0.

: dy _2y-x

(i Show that 3= = y—2x°

(ii) Find the co-ordinates of each of the points on the curve where the
tangent is parallel to the x axis.

[Cambridge International AS & A Level Mathematics 9709, Paper 2 Q7 June 2008]

The equation of a curve is x*> — x2y — > = 3.

d
(i Find d_z in terms of x and y.
(ii) Find the equation of the tangent to the curve at the point (2, 1), giving
your answer in the form ax+ by + ¢=0.

[Cambridge International AS & A Level Mathematics 9709, Paper 32 Q3 November 2009]

The equation of a curve is xy(x+ y) = 2a®, where a is a non-zero constant.
Show that there is only one point on the curve at which the tangent is parallel
to the x axis, and find the co-ordinates of this point.

[Cambridge International AS & A Level Mathematics 9709, Paper 3 Q6 June 2008]

v
N
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When you go on a ride like the one in the picture, your body follows a very
unnatural path and this gives rise to sensati@vhich you may find exhilarating
or frightening.

You are accustomed to expressing vgs as mathematical equations. How would

you do so in a case like this?

Figure 4.8 shows a mmph@glon of such a ride.

(a) \ (b) AP has in total
turned through
Q angle 36.
(6] A 2m P
A3
At the start Some time later
*
e 4.8

he passenger’s chair is on the end of a rod AP of length 2 m which is rotating
about A. The rod OA is 4 m long and is itself rotating about O. The gearing of the
mechanism ensures that the rod AP rotates twice as fast relative to OA as the rod
OA does. This is illustrated by the angles marked on figure 4.8(b), at a time when OA
has rotated through an angle 6.

YA
At this time, the co-ordinates
of the point P, taking O as the P
origin, are given by 2/ 30
A 360 |
x=4cosO+2cos30 4 ;
. . v 2 cos36

y=4sin0 +2sin30 7 14 sin

( f 4 9) (6] 4 cosf 'x
see re 4.9).
e Figure 4.9
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These two equations are called parametric equations of the curve. They do not
give the relationship between x and y directly in the form y = f(x) but use a third
variable, 0, to do so. This third variable is called the parameter.

To plot the curve, you need to substitute values of 6 and find the corresponding
values of xand y.

Thus 6=0° = x=4+2=6
y=0+0=0 Point (6, 0)

0=30° = x=4x0.866+0=23.464
y=4%x054+2x1=4 Point (3.46, 4)

and so on.

Joining points found in this way reveals the curve to have the shape shown in
figure 4.10.

6 =240°, 300°

Figure 4.10

At what points of the curve would you feel the greatest sensations?

Graphs from parametric equations

Parametric equations are very useful in situations such as this, where an
otherwise complicated equation may be expressed reasonably simply in

terms of a parameter. Indeed, there are some curves which can be given by
parametric equations but cannot be written as cartesian equations (in terms of
xand y only).

The next example is based on a simpler curve. Make sure that you can follow the
solution completely before going on to the rest of the chapter.

P2

suonenba sujswesed
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P 2 EXAMPLE 4.19 A curve has the parametric equations x=2t, y = i—?
(i) Find the co-ordinates of the points corresponding to t=1, 2, 3, -1, —2 and —3.
(ii) Plot the points you have found and join them to give the curve. :
c (iii) Explain what happens as t —0.
o
& SOLUTION
g
o (i)
£ ' t | -3 2 | - 1 2 3
=
x -6 —4 -2 2 4 6
y 4 9 36 36 9 4

The points required are (=6, 4), (-4, 9), (-2, 36), (2, 36)x(4, 9) and (6, 4).
(i) The curve is shown in figure 4.11.
- .0

by
40
| EYN \
| Gdid \
/ ) \
I~
_ 4 10 N L
= 10 \ U
t= | 9 ™ -3
@ —4 -2 0 2 4 6 X
Figure 4.%
(i) As , x =0 and y — . The y axis is an asymptote for the curve.

< . .
EXAMPLE 4.20 e has the parametric equations x=t2, y=1> — ¢.

i) Find the co-ordinates of the points corresponding to values of ¢ from -2 to
+2 at half-unit intervals.

(ii) Sketch the curve for -2 < t< 2.

(i) Are there any values of x for which the curve is undefined?

SOLUTION

W t -2 |-1.5 -1 |05 0 0.5 1 1.5 2
x 4 2.25 1 0.25 0 0.25 1 2.25 4
y -6 |-1.875 0 0.375 0 |-0.375 0 1.875 6
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(ii) YA

v
N

N
T

suonenba sujswesed

-6

Figure 4.12

(iii) The curve in figure 4.12 is undefined for x < 0.

Graphic calculators can be used to sketch parametric curves but, as with cartesian

curves, you need to be careful when choosing the range.

EXAMPLE 4.21

Finding the equation by eliminating the parameter

For some pairs of parametric equations, it is possible to eliminate the parameter
and obtain the cartesian equation for the curve. This is usually done by making
the parameter the subject of one of the equations, and substituting this expression
into the other.

Eliminate ¢ from the equations x = t> — 2¢2, y = %
SOLUTION
. = t=2y.
Y 2 y
Substituting this in the equation x= > — 22 gives

x=(2y)°-2(2y)? or x=8y%—8y%

107
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Parametric differentiation

P2

m To differentiate a function which is defined in terms of a parameter ¢, you need

to use the chain rule:

e dy _dy  dt
."2; dx — dt " dx’
e Since
2
8 dr_1
= d
[a) dx di:
it follows that
dy
dy _a

dx  dx
dr @
provided that dx 4, O
) @)
2, y=2t.
<
(i) Find g_y in terms of the parameter &

p t
(i) Find the equation of the tange@ curve at the general point (#2, 21).
(iii) Find the equation of the tangent atthe point where = 3.
(iv) Eliminate the parameter l&nce sketch the curve and the tangent at the

point where = 3. @
SOLUTION %
i x=f Q X =t

EXAMPLE 4.22 A curve has the parametric equations x = t

dr
_ dy _
V= dt_2
dy
WY_de _ 2 _1
dx dx 2¢
dt

(i) Using y— y, = m(x— x,) and taking the point (x,, y,) as (¢%, 21), the equation
of the tangent at the point (¢, 21) is

y—2t=%(x— 12)

This equation still contains the
parameter, and is called the equation
of the tangent at the general point.

= ty—2t2=x—1

= x—ty+t2=0

(i) Substituting =3 into this equation gives the equation of the tangent at the
point where t= 3.

The tangent is x— 3y +9=0.
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(iv) Eliminating ¢ from x= t2, y = 2t gives

2
x= (%) or y?=4x.

This is a parabola with the x axis as its line of symmetry.

v
N

The point where ¢= 3 has co-ordinates (9, 6).
The tangent x — 3y + 9 = 0 crosses the axes at (0, 3) and (-9, 0).

The curve is shown in figure 4.13.

uoIjRIIUBIBIP dl3BWeIRd

6 -
3
' >
-9 0 9 x
-6
Figure 4.13
EXAMPLE 4.23 A curve has parametric equations x =4 cosf, y = 3sin6.

(i) Find j_y at the point with parameter 6.
X

(ii) Find the equation of the normal at the general point (4 cos8, 3sin8).
(iii) Find the equation of the normal at the point where 6 = %
(iv) Find the co-ordinates of the point where 6 = %

(v) Show the curve and the normal on a sketch.
SOLUTION

(i) x=4cosf = d—z=—4sin0

y=3sinf = 4~ 30056
do

_ _3cos6 100
4sin@
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(i) The tangent and normal are perpendicular, so the gradient of the normal is

-1 which is 451n0 m,m,=—1 for
jl 3cos 9 perpendicular lines.
x

Using y — y; = m(x — x;) and taking the point (x,, y,) as (4cos6, 3sin6), the
equation of the normal at the point (4 cos8, 3sin6) is

: 4sinf
— = —4
y 3sin6 3c0s (JC Cos 0)

= 3y cosO —9sinfcosO = 4xsinf — 16sin6 cosb
= 4xsinf — 3y cos@ — 7sinf cos =0
1 . .
(iii) When 0 =L, cos = and sin6 = —=, so the equation of the normal is
4 \E 2

1 1 11

AxX —==3yX —=-7X—F—=X—==0 @
V2 V2 J2 2 O

= a2x-3J2y-7=0

= 4x—3y—4.95=0 (t:) 2 decimal places)
(iv) The co-ordinates of the point wher&é’g&are

4
(4cos4 3sin~ ) (4><\/—&%
~ (2.
&

\ YA
This curve ig
an ellipge. J 3
(2.83,2.12)
. 4 0 4 x
-3
Figure 4.14
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Stationary points

nmegal ect ure@mai | .

When the equation of a curve is given parametrically, the easiest way to

distinguish between stationary points is usually to consider the sign of =2 dy

use this method, you must be careful to ensure that you take points wh1ch are to
the left and right of the stationary point, i.e. have x co-ordinates smaller and
larger than those at the stationary point. These will not necessarily be points
whose parameters are smaller and larger than those at the stationary point.

Find the stationary points of the curve with parametric equations x=2¢+ 1,
y=3t— t, and distinguish between them.

SOLUTION
dx
dt
y=3t—-£ = dy _3_3p
dt
dy
dy _dr _3-32_3(1-1?)
dx dx 2 2
dt
Stationary points occur when j_y =0:
x
= #=1 = t=1 or t=-1
Att=1: x=3,y=2
Att=0.9: x=2.8 (tothe left), =2 =10.285 (positive)
Att=1.1: x=3.2 (to the right); j_y =-0.315 (negative) / \
x

There is a maximum at (3, 2).

Att=-1: x=-1,y=2
At t=-1.1: x=-1.2 (to the left); d_y =-0.315 (negative)

Att=-0.9: x=-0.8 (to the right); ?1_ = 0.285 (positive)
x

There is a minimum at (-1, =2).

An alternative method

d%y d
Alternatively, to find —5 2 when <2 is expressed in terms of a parameter requires a

dax? dx

further use of the chain rule:

&y i(dy) d (dy)x d
dx?  dx\dx) dr\dx)” dx’

P2

uoIjRIIUBIBIP dl3BWeIRd
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X
m (i) x=3¢2 (i) x=0-cosO
y=21 y=0+sinf

(i) x=1t+= (iv) x=3cosf

P2 EXERCISE 4E 1 For each of the following curves, find 97 in terms of the parameter.

~ |—

y=2sin6

~ |—

y=t-
(v) x=(t+1)? (vi) x=0sin0 + cosO

Differentiation

y=(t—1)>2 y=0cos —sin6

wii)x=e2 + 1 (viii) x=—t—

y=e

‘H

}/:

[—

-t
2 A curve has the parametric equations x=tan 6, y= tan@nd

(i) the value of dy when6=12 ()O
6

X
(i) the equation of the tangent to the cu@at‘the point where 0 =

oxl:l oxlr_\

(iii) the equation of the normal to th%lr at the point where 0 =

3 A curve has the parametric e&t&x =2, y=1- % for > 0. Find
(i) the co- ordlnates of gdnt P where the curve cuts the x axis
(ii) the gradient e at this point
(iii) the equatlo e tangent to the curve at P

(iv) the co- %ﬂ s of the point where the tangent cuts the y axis.

4 A curv etric equations x = ar?, y = 2at, where a is constant. Find

(i) tixe equation of the tangent to the curve at the point with parameter ¢

the equation of the normal to the curve at the point with parameter ¢

jii) the co-ordinates of the points where the normal cuts the x and y axes.
A curve has parametric equations x = cos6, y = cos20.

(i) Show that j_y =4cosb.

2

(i) By writing gy in terms of x, show that % -4=0.
X

6 The parametric equations of a curve are x=at, y = Q, where aand b are
constant. Find in terms of g, band ¢ !

dy

dx

(i) the equation of the tangent to the curve at the general point (at, ?)

(i)

(iii) the co-ordinates of the points X and Y where the tangent cuts the x and y axes.
E (iv) Show that the area of triangle OXY is constant, where O is the origin.
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7 The diagram shows a sketch of the curve given parametrically in terms of ¢ by
the equations x = 4t and y = 21> where f takes positive and negative values. PZ

3Jp es1949x3

=Y

O

P is the point on the curve with parameter .

(i) Show that the gradient at P is .

(i) Find and simplify the equation of the tangent at P.

The tangents at two points Q (with parameter ¢,) and R (with parameter t,)
meet at S.

(i) Find the co-ordinates of S.

(iv) In the case when t, + t, = 2 show that § lies on a straight line.

Give the equation of the line.
[MEL adapted]

8 The diagram shows a sketch of the curve given parametrically in terms of ¢ by
the equations x=1—#2, y=2¢+ 1.

A
\ .

<Y

/QR

Not to scale

(i) Show that the point Q(0, 3) lies on the curve, stating the value of ¢
corresponding to this point.

(i) Show that, at the point with parameter ¢,
dy _ 1

dx t

(i) Find the equation of the tangent at Q.
(iv) Verify that the tangent at Q passes through the point R(4, —1).

(v) The other tangent from R to the curve touches the curve at the point S and

has equation 3y — x+ 7 = 0. Find the co-ordinates of S.
[MEI] 113
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9 The diagram shows a sketch of the curve with parametic equations x=1 - 2¢,
y= 2. The tangent and normal at P are also shown.

YA

P(5, 4)

.

°l/
(i) Show that the point P(5, 4) lies on the curve by stating the value of ¢

corresponding to this point. d
(i) Show that, at the point with parameter ¢, d_i =6
(iii) Find the equation of the tangent at P.

(iv) The normal at P cuts the curve again at Q. Find the co-ordinates of Q.

. [MEI]

10 A particle P moves in a plane so thaf at time #its co-ordinates are given by
x=4cost, y=3sint Find

(i) dy; in terms of ¢ ()&

dx
(ii) the equation of t gent to its path at time ¢
(iii) the values o which the particle is travelling parallel to the line x+ y=0.

- S fy=sech then & -
11 (i) By dlff@ g~ 9 , show that if y = sec then 6= secOtan0.
(i) T ametric equations of a curve are
=1+tanf, y=sech,
+ for —%TE <0< %TE. Show that dy_ sin.
dx

(i) Find the co-ordinates of the point on the curve at which the gradient of

-1
the curve is 5.
[Cambridge International AS & A Level Mathematics 9709, Paper 2 Q5 June 2005]

12 The parametric equations of a curve are
x=3t+In(t-1), y=£+1, fort>1.

(i) Express dy in terms of .

dx
(ii) Find the co-ordinates of the only point on the curve at which the
gradient of the curve is equal to 1.

[Cambridge International AS & A Level Mathematics 9709, Paper 2 Q3 June 2007]
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13 The parametric equations of a curve are

14

15

16

x=4sinf, y=3-2cos20,
dy . T
where —%n <0< %n. Express < in terms of 6, simplifying your answer as
) dx
far as possible.
[Cambridge International AS & A Level Mathematics 9709, Paper 2 Q4 June 2009]
The parametric equations of a curve are

x=1—e", y=e+el

(i) Show that dy =e2 -1,
dx

(ii) Hence find the exact value of t at the point on the curve at which the
gradient is 2.

[Cambridge International AS & A Level Mathematics 9709, Paper 22 Q4 November 2009]
The parametric equations of a curve are
x=20+sin20, y=1-cos20.

Show that dy =tan6.
dx

[Cambridge International AS & A Level Mathematics 9709, Paper 3 Q3 June 2006]
The parametric equations of a curve are
x=acos’t, = gasin’®
= . y=asin’t,

where a is a positive constant and 0 < ¢ < %Tt.

(i) Express dy in terms of £.

dx
(ii) Show that the equation of the tangent to the curve at the point with
parameter tis

xsint+ ycost=asintcost.

(iii) Hence show that, if this tangent meets the x axis at X and the y axis at Y,
then the length of XY is always equal to a.

[Cambridge International AS & A Level Mathematics 9709, Paper 3 Q6 June 2009]

v
N
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KEY POINTS |
P2

m 1 y=kx"= j_)/ = knx"! where k and 7 are real constants.
X

e W - dy du
5 2 Chain rule: I dux dx
]
£ _ . Y du dv
g 3 Product rule (for y= uv): Pl p + Uge
a du dv
Ve — U
g _u).dy __dx dx
4 Quotient rule (for y = V) P R
dy 1
% dx A&
dy

d 1y L
6 dx(lnx) =

d

dx(e):e

8 i(sinkx) = kcoskx
dx
d s
_dx(COSkx) = —ksinkx

d _ 2
dx(tankx) = ksec“kx

9 An implicit fupresion is one connecting x and y where y is not the subject.
When you diffesentiate an implicit function:

dy

dx
e differentiating 4x°y* with respect to x gives 12x? X y* + 4x°> X Zy%.

o diffdrentiating y? with respect to x gives 2y

‘{he derivative of any constant is 0.

10 In parametric equations the relationship between two variables is
expressed by writing both of them in terms of a third variable or
parameter.

11 To draw a graph from parametric equations, plot the points on the curve
given by different values of the parameter.

4y ¥ d
4y _ dt : dx
12 5 % provided thatdt % 0.
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Integrals involving the exponential function

EXAMPLE 5.1

Integration

v
N

Every picture is worth a thousand words.
Traditional Chinese proverb

Since you know that

i(ewﬁb) — aeax+b,

dx
you can see that

Jeax+b dx= l eax+b+ c
a

This increases the number of functions which you are able to integrate, as in the

uoi3ouny wyjieho] jeinjeu ay3 Buinjoaur sjesbajul

following example.

Find the following integrals.

(i) Jez"‘3 dx (i) Jf6esx dx
SOLUTION
(i) Jer—S dx= %er—?a +c
3x1°

(i) Jf6e3x dx = 66; ]1

_ 3x]°

- [26 x]1

=2(el>-¢?)

=6.54 % 10° (to 3 significant figures)

Integrals involving the natural logarithm function

You have already seen that
J Lax=Inx+c
X

There are many other integrals that can be reduced to this form.

117
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5
P2 EXAMPLE 5.2 Evaluate J Lax
22X

m SOLUTION

1| par=glina,

1
=E(ln5—ln2)

Integration

=0.458 (to 3 significant figures)

In this example the % was taken outside the integral, allowing the standard result

for i to be used.

Since
d}/ a
=In(ax+b) = =~ =
y=In( ) dx ax+b
So
a N
Jax n bdx =lIn(ax+b)+c ¢ mean ‘an arbitrary constant’ and so
< doe® not necessarily have the same
and < lue from one equation to another.
J 1 dx = l1n(ax+b)+c
ax+b a
>
EXAMPLE 5.3 Findj ——dx.
05x+3
SOLUTION

2

2 .
1 N
J05x+3dx = [§,1(5x+3) .

/1 1
N gln13 5ln3

=0.293 (to 3 significant figures)

Extending the domain for logarithmic integrals

The use of Ji dx=1In x+ chas so far been restricted to cases where x > 0, since
logarithms are undefined for negative numbers.

Look, however, at the area between —b and —a on the left-hand branch

of the curve y = i in figure 5.1. You can see that it is a real area, and that it must

be possible to evaluate it.

Www. yout ube. cont negal ect ur e Page1270f353



what sapp:

ACTIVITY 5.1

(P
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oy

b —a B

Figure 5.1

1 What can you say about the areas of the two shaded regions?

2 Try to prove your answer to part 1 before reading on.

Proof

a1

LetAzj =dx.
x

Now write the integral in terms of a new variable, u, where u=—x.

This gives new limits: x=—b = wu="b
X=—a = u=a.

Qz—l =dx=-du.

dx

So the integral becomes
N e
A= Jb — (—du)

= Jﬂl du

b
= [Ina—1nb]
= —[Inb—Ina] =—area B

So the area has the same size as that obtained if no notice is taken of the fact that
the limits a and b have minus signs. However it has the opposite sign, as you

would expect because the area is below the axis.

Consequently the restriction that x > 0 may be dropped, and the integral is written

Jldx=1n|x|+c.
X

Similarly, j% dx=1In|f(x)|+c

v
N
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EXAMPLE 5.4 Find the value of J 1 i dx.
SOLUTION

To make the top line into the differential of the bottom line, you write the
integral in one of two ways.

j74— dx=—[Inl4-xl]] —J:xi4dx=—[ln|x—4|];
~[(Inl-31) = (In | -11)] =—[In3-1In1]
=—[In3-In1] =-1.10 (to 3 s.f.)

=-1.10 (to 3 s.f.)

A Since the curve y= i is not defined at O
the discontinuity at x= 0 (see figure ()

5.2), it is not possible to integrate across
this point.

Consequently in the 1ntegral S\

the limits p and g must have th
sign, either + or —. The integ C valid

otherwise.

o)

(0)

Figure 5.2

rveis y= £ where p,(x) and p,(x) are polynominals.

py(%)

ou tell from the equation whether the curve has a discontinuity?

n you prove y= x> — 2x+ 3 has no discontinuities?

EXERCISE 5A 1 Find the following indefinite integrals.
0] E dx (ii) Jﬁdx (iii) Jﬁd" (iv) J2x1_9dx
2 Find the following indefinite integrals.
0] Je“ dx (i) jef“" dx (iii) Je% dx
(iv) j—dx (v) Jei# dx
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3 Find the following definite integrals.

Where appropriate give your answers to 3 significant figures.

v
N

(i) J44 *d i [ d
i J 4t dx i) | oo dx
1 1
(iii) J_l (e¥+ e™) dx (iv) j_ze“—z dx E
g,
The graph of y=x+ > is shown bel 8
4 The graph of y = x+ — is shown below. @
YA
P
‘4 L.
0 5 x
Q
(i) Find the co-ordinates of the minimum point, P, and the maximum point, Q.
(i) Find the area of each shaded region.
5 The diagram illustrates the graph of y = e*. The point A has co-ordinates
(In5, 0), B has co-ordinates (In5, 5) and C has co-ordinates (0, 5).
YA
C B (In5, 5)
/ |
| 3 | | | | >
O A X
(i) Find the area of the region OABE enclosed by the curve y = e* the x axis,
the y axis and the line AB. Hence find the area of the shaded region EBC. 121
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(i) The graph of y = e*is transformed into the graph of y=Inx.
Describe this transformation geometrically.

(i) Using your answers to parts (i) and (ii), or otherwise, show that
ﬁlnxdxz 5In5—4.
(iv) Deduce the values of
@ [’In(x) dx

(b) Jfln(?»x) dx.
[MEL adapted]

6 (i) Differentiate In(2x+ 3).
(ii) Hence, or otherwise, show that

Pl 4x=1In3
J_12x+3 r= e

(iii) Find the quotient and remainder when 4x? #8x¥s’divided by 2x + 3.
(iv) Hence show that

3 2
J 4x" 48X 4, — 12— 31n3.
-1 2x+3

[Cambridge International)AS'& A Level Mathematics 9709, Paper 2 Q7 June 2006]

dy 2

7 A curve is such that =6 2¢7*, The point (0, 1) lies on the curve.

(i) Find the equation Ofthe curve.
(i) The curve hasWne stationary point. Find the x co-ordinate of this point
and determipcywhether it is a maximum or a minimum point.

.Canthridge International AS & A Level Mathematics 9709, Paper 2 Q6 November 2005]

8 (i) FisdWhe equation of the tangent to the curve y =In(3x — 2) at the point
where x=1.
() (a) Find the value of the constant A such that

6x _ A
x-2- V37
6 6x _ 8
(b) Hence show that Jsz = 2dx =8+ 3ln2.

[Cambridge International AS & A Level Mathematics 9709, Paper 2 Q8 June 2009]

k
9 Find the exact value of the constant k for which Jl le_ ldx =1

[Cambridge International AS & A Level Mathematics 9709, Paper 3 Q1 November 2007]
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v
N

A series for e*

The exponential function can be written as the infinite series

e*=a +ax+ax’+ax’+axt+... (forx€R) ]
h b :
where a, a,, a,, ... are numbers. &
=3
You can find the value of a,, by substituting the value zero for x. g
[
Since e? =1, it follows that 1 = a,+0+0+0+...,and so a,= 1.
You can now write: e*= 1+ a,x+ a,x* +a,x+ a,x* + ...
Now differentiate both sides: e*= a, + 2a,x+3a,x* + 4a,x* + ...,
and substitute x=0 again: 1=a,+0+0+0+...,and so a, = 1 also.
Now differentiate a second time, and again substitute x= 0. This time you find
a,. Continue this procedure until you can see the pattern in the values of a, a,
Ay ds, ... .
When you have the series for €%, substitute x= 1. The left-hand side is ! or e, and
so by adding the terms on the right-hand side you obtain the value of e. You will
find that the terms become small quite quickly, so you will not need to use very
many to obtain the value of e correct to several decimal places.
If you are also studying statistics you will meet this series expansion of e* in
connection with the Poisson distribution.
Compound interest
You win $100000 in a prize draw and are offered two investment options.
A You are paid 100% interest at the end of 10 years, or
B You are paid 10% compound interest year by year for 10 years.
Under which scheme are you better off?
. . final money . $200 000
Clearly in scheme A, the ratio R= —— Y is $ =2.
original money ~ $100 000
What is the value of the ratio R in scheme B?
Suppose that you asked for the interest to be paid in 20 half-yearly instalments of
5% each (scheme C). What would be the value of R in this case?
Continue this process, investigating what happens to the ratio R when the
interest is paid at increasingly frequent intervals.
Is there a limit to R as the time interval between interest payments tends to zero?
123
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Integrals involving trigonometrical functions

P2

m Since (f—x(Sin(ax + b)) = acos(ax + b)

it follows that jcos(ax +b)dx = isin(ax +b)+c

[-asin(ax + b)dx = cos(ax + b) ¥ ¢

it also follows that jsin(ax +b)dx = —tlzcos(ax +b)+c

Iacos(ax + b)dx =sin(ax + b) + ¢

Integration

Similarly, since ﬁ(cos(ax + b)) = —asin(ax + b)

Also %(tan(ax +b)) = asecXax +b)
and so Jsecz(ax+b)dx = itan(ax+b)+c®
EXAMPLE 5.5 Find O
(i) J.seczxdx (i) _[siandx (i) Icos(3x —m)dx.

g

SOLUTION

(i) Iseczx dx = tanx +¢ 0

(i) Jsiandx = —%cost + ()

(i) Jcos (3x—m) dx\ésm:::{x —T)+c
EXAMPLE 5.6 Find the ex %of 3(sin2x — cos4x) dx.

SOLUT
& 1
12x — cosdx)dx= [ 5€082x — 751n4xl)
_[1 2_n__ I I I GNP D o
—[ 2cos3 3} [Zcoso 4M }
SENERNE A
2 2] 4 2 2
_1,45.1
4 8 2
3.3
=78 "4
_6+4/3
8

WWW. yout ube. com negal ect ur e Page 13307353



what sapp:

EXAMPLE 5.7

EXAMPLE 5.8
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Using trigonometrical identities in integration
Sometimes, when it is not immediately obvious how to integrate a function

involving trigonometrical functions, it may help to rewrite the function using
one of the trigonometrical identities.

Find J sin? x dx.

SOLUTION
Use the identity
cos2x=1-2sin’x.
(Remember that this is just one of the three expressions for cos2x.)
This identity may be rewritten as
sinx= %(1 — C0s2x).

By putting sin’x in this form, you will be able to perform the integration.

Jsinzxdxzéj(l —cos2x) dx

1,1
—z(x 2sm2x)+c

1.1
=5x 4sm2x—i—c

You can integrate cos® x in the same way, by using cos® x= %(cos 2x+ 1). Other
even powers of sin x or cos x can also be integrated in a similar way, but you have
to use the identity twice or more.

Find J cos*x dx.

SOLUTION
First express cos* x as (cos® x)%

costx = [%(c052x+ 1)]2

= %(cos2 2x+2cos2x+ 1)

Next, apply the same identity to cos? 2x:

cos?2x= %(cos 4x+ 1)

Hence cos*x = i(%cos4x+ % +2cos2x+ 1)

_1/1 3
—7(2cos4x+2c052x+ E)

=

cos4x+%c052x+%

v
N
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This can now be integrated.

Jcos“xdxzj.(é cos4x+lc052x+ §) dx

3i251n4x+ sin2x+ x+ c

EXERCISE 5B 1 Integrate the following with respect to x.
(i) sinx—2cosx (i) 3cosx+2sinx (i) 5sinx+4cosx
(iv) 4sec®x (v) sin(2x+1) (vi) cos(5x—T)
(vii) 6sec?2x (viii) 3sec?3x— sin2x (ix) 4sec’x— cos2x

2 Find the exact value of the following.

T T
. 3.0 T 4 2
(i) J;smxdx (ii) J;sec X
T 2 O
... 3 . .
(iii) _Ecosxdx (iv) NS 2xdx

51
(v) EcosSxdx @J. sec22xdx

T
(vii) J.;Ecos(Zx + %) dx &0 (viii) j04(sec2x + cos4x)dx

(ix) J. (cosx + sin2x) @O

3 (i) Show thatsj sz—zstx

(ii) Hence l@\e exact value of Esinx cosx dx.

4 Use aSuitable trigonometric identity to help you find these.

T
Ja Jcoszx dx (b) Ecoszxdx

Uy
. ‘2 3ein2
(i) (a) Jsm xdx (b) ‘Esm xdx
5 (i) By expanding sin(2x+ x) and using double-angle formulae, show that
sin3x=3sinx— 4sin’x.

(ii) Hence show that

1TE
|3 -3 _5
X sin xdx——24.

[Cambridge International AS & A Level Mathematics 9709, Paper 2 Q7 June 2005]
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6 The diagram shows the part of the curve y=sin’xfor 0 < x <.

v
N

’ m
m
Ed
(]
o,
]
(]
(4]
> ©
O T X
d .
(i) Show that & _ gin2x.
dx
(i) Hence find the x co-ordinates of the points on the curve at which the
gradient of the curve is 0.5.
(iii) By expressing sin®x in terms of cos 2x, find the area of the region bounded
by the curve and the x axis between 0 and 7.
[Cambridge International AS & A Level Mathematics 9709, Paper 2 Q7 November 2005]
7 (i) Express cos’xin terms of cos2x.
(ii) Hence show that
lTC
P cos’xdx = i+ 143,
0 6 8
(i) By using an appropriate trigonometrical identity, deduce the exact value of
1
n .
JE sin®x dx.
[Cambridge International AS & A Level Mathematics 9709, Paper 2 Q6 June 2007]
8 (i) Prove the identity
(cosx+3sinx)?2=5—4cos2x+ 3sin2x.
(i) Using the identity, or otherwise, find the exact value of
Ly
J.g (cosx + 3sinx)?dx.
[Cambridge International AS & A Level Mathematics 9709, Paper 2 Q7 November 2007]
L T
9 (i) Show that J? cos2xdx = 1.
(i) By using an appropriate trigonometrical identity, find the exact value of
1
=TT
J.f 3tan’xdx.
ETE
[Cambridge International AS & A Level Mathematics 9709, Paper 22 Q4 June 2010]
127
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Numerical integration

P2

m There are times when you need to find the area under a graph but cannot do this

by the integration methods you have met so far.

e The function may be one that cannot be integrated algebraically. (There are
many such functions.)

e The function may be one that can be integrated algebraically but which

Integration

requires a technique with which you are unfamiliar.

e It may be that you do not know the function in algebraic form, but just have a
set of points (perhaps derived from an experiment).

In these circumstances you can always find an approximate answer using a
numerical method, but you must:

(i) have a clear picture in your mind of the graph of the tdaction, and how your
method estimates the area beneath it

(i) understand that a numerical answer without any’estimate of its accuracy, or
error bounds, is valueless.
The trapezium rule

In this chapter just one numerigal method of integration is introduced, namely
the trapezium rule. As an illugttatich of the rule, it is used to find the area

under the curve y = 5x 2’ {6t values of x between 0 and 4.

It is in fact possible toNntegrate this function algebraically, but not using the
techniques that yodu/njwe met so far.

Note

You showldWot use a numerical method when an algebraic (sometimes called
anafytic) technique is available to you. Numerical methods should be used only
vReivother methods fail.

Figure 5.3 shows the area approximated by two trapezia of equal width.

Yy
3k
y=y5x—x*
2_
1| A B
I I >
0 I 2 3 4 s x

Figure 5.3
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Remember the formula for the area of a trapezium, Area = %h(a + b), where a and
b are the lengths of the parallel sides and & the distance between them.

In the cases of the trapezia A and B, the parallel sides are vertical. The left-hand
side of trapezium A has zero height, and so the trapezium is also a triangle.

When x=0 = y= Jo=0
When x=2 = y=+6=2.4495 (to4d.p.)
When x=4, = y= \/Zzz
2.4495 2.4495 2
(0) @ (2) “4)
Figure 5.4

1

The area of trapezium A = 3 X2X(0+2.4495) = 2.4495

The area of trapezium B = % X 2 %X (2.4495+2) = 4.4495

Total 6.8990

For greater accuracy you can use four trapezia, P, Q, R and S, each of width
1 unit as in figure 5.5. The area is estimated in just the same way.

YA

3 f—

2 f—

1 Pl Q R S

2 Jo| Jo 2
|

(6] 1 2 3 4 5 x
Figure 5.5
Trapezium P: 5x 1 X (0+2) =1.0000

These figures are
given to 4 decimal
places but the
calculation has been
done to more places
on a calculator.

Trapezium Q: 5 X 1 X (2 +2.4495) =2.2247

Trapezium R: 5 X 1 X (2.4495 + 2.4495) =2.4495

N= NI= NI= N—=

X 1 X (2.4495 + 2)
Total

=2.2247
7.8990

Trapezium S:

P2

uoneabajul [eslIBWINY
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ACTIVITY 5.2

Accuracy

In this example, the first two estimates are 6.8989... and 7.8989... . You can see
from figure 5.5 that the trapezia all lie underneath the curve, and so in this case the
trapezium rule estimate of 7.8989... must be too small. You cannot, however, say
by how much. To find that out you will need to take progressively more strips to
find the value to which the estimate converges. Using 8 strips gives an estimate of
8.2407..., and 16 strips gives 8.3578... . The first figure, 8, looks reasonably certain
but it is still not clear whether the second is 3, 4 or even 5. You need to take even
more strips to be able to decide. In this example, the convergence is unusually
slow because of the high curvature of the curve.

Use a graph-drawing program with the capability to calculate areas using
trapezia. Calculate the area using progressively more strips #i observe the
convergence.

It is possible to find this area without using calculus at all.

How can this be done? How close is the d 6-strip estimate?

The procedure

In the previous example, the answer of 7.8990 from four strips came from adding
the areas of the four tsapezia P, Q, Rand S:

Ix 1% (0+2) +2x Q12 +2.4495) +3 X 1 x (2.4495 + 2.4495) + § X 1 X (2.4495 +2)

and this cai{ bt written as

"\ These are the heights
of the intermediate
vertical lines.

IXTX[0+2X (2 +2.4495 + 2.4495) +2]

This is the
strip width: 1.

This is often stated in words as

These are the heights of the ends of
the whole area: 0 and 2.

Area = % x strip width X [ends + twice middles]

or in symbols, for # strips of width h

1
A=~SXhX[y,+y,+2+y,+ . +y,_ Dl
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This is called the trapezium rule for width h (see figure 5.6).

YA

Yo

N1

% DN

emai | :

nmegal ecture@mi |l . con

y=1fx)

Figure 5.6

€ Lookat the three graphs in figure 5.7, and in each case state whether the
trapezium rule would underestimate or overestimate the area, or whether you

VIS

(fii)

cannot tell.

yI
X
(i)

Figure 5.7

(i)

EXERCISE 5C

1 The speed vin ms™ of a train is given at time ¢ seconds in the following table.

10

20

30

40

50

60

5.0

6.7

8.2

9.5

10.6

11.6

The distance that the train has travelled is given by the area under the graph of

the speed (vertical axis) against time (horizontal axis).

(i) Estimate the distance the train travels in this 1-minute period.

(ii) Give two reasons why your method cannot give a very accurate answer.
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1 . T

dx is known to equal .

ol+ x? R

(i) Using the trapezium rule for four strips, find an approximation for 7.
(i) Repeat your calculation with 10 and 20 strips to obtain closer estimates.

(i) If you did not know the value of m, what value would you give it with
confidence on the basis of your estimates in parts (i) and (ii)?

The table below gives the values of a function f(x) for different values of x.

x 0 0.5 1.0 1.5 2.0 2.5 3.0

f(x) 1.000 | 1.225 | 1.732 | 2.345 | 3.000 | 3.674 | 4.359

(i) Apply the trapezium rule to the values in this table to obtain an
approximation for '[g f(x) dx.

(i) By considering the shape of the curve y = f(x), explain whether the
approximation calculated in part (i) is likely o Desan overestimate or an
underestimate of the true area under the curve/y = f(x) between x=0
and x=3.

[MEI]

The graph of the function y =+ 2 +ax {for x = —2) is given in the diagram.
The area of the shaded region ABGR'is to be found.

>
e
X

(6] 2 7

(i) Make a table of values for y, for integer values of x from x=2to x=7,
giving each value of y correct to 4 decimal places.

(i) Use the trapezium rule with five strips, each 1 unit wide, to calculate an
estimate for the area ABCD.
State, giving a reason, whether your estimate is too large or too small.

Another method is to consider the area ABCD as the area of the rectangle
ABCE minus the area of the region CDE.

(i) Show that the area CDE is given by Jj (y?—4)dy.
Calculate the exact value of this integral.
(iv) Find the exact value of the area ABCD.

Hence find the percentage error in using the trapezium rule.
[MEL adapted]
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The trapezium rule is used to estimate the value of I = ‘[10'6\/ 1+ x?dx.

(i) Draw the graph of y=+1+ x? for 0 < x < 1.6.

(i) Use strip widths of 0.8, 0.4, 0.2 and 0.1 to find approximations to the value
of the integral.

(iii) State the value of the integral to as many decimal places as you can justify.

L
The trapezium rule is used to estimate the value of J v sinx dx.
0

(i) Draw the graph of y= v/sinx for0 < x=< 1.

(i) Usel, 2,4, 8 and 16 strips to find approximations to the value of the
integral.

(iii) State the value of the integral to as many decimal places as you can justify.

. . . 1 4
The trapezium rule is used to estimate the value of J I3 2 dx.
0

(i) Draw the graph of y= for0s=x=<1.

1+ x?
(i) Use strip widths of 1, 0.5, 0.25 and 0.125 to find approximations to the
value of the integral.

(iii) State the value of the integral to as many decimal places as you can justify.

2
A student uses the trapezium rule to estimate the value of J (2 — cos2mx) dx.
0

(i) Find approximations to the value of the integral by applying the trapezium
rule using strip widths of, 2, 1, 0.5 and 0.25.

(i) Sketch the graph of y=2 — cos2nxfor 0 < x < 2.
On copies of your graph shade the areas you have found in parts (i)(a) to (d).

(i) Use integration to find the exact value of this integral.

The diagram shows the part of the curve y = lnTx for 0 < x < 4. The curve cuts
the x-axis at A and its maximum point is M.

(i) Write down the co-ordinates
of A.

(ii) Show that the x co-ordinate

YA

of M is e, and write down the
y co-ordinate of M in terms of e. A

><V

(i) Use the trapezium rule with three 4
intervals to estimate the value of

J4m—xdx

1 X

correct to 2 decimal places.

(iv) State, with a reason, whether the trapezium rule gives an underestimate or
an overestimate of the true value of the integral in part (iii).

[Cambridge International AS & A Level Mathematics 9709, Paper 2 Q6 June 2005]
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10 The diagram shows the part of the curve y=e*cosx for 0 < x < %TI:. The
curve meets the y axis at the point A. The point M is a maximum point.

YA

=Y

(i) Write down the co-ordinates of A.
(ii) Find the x co-ordinate of M.
(i) Use the trapezium rule with three intervals to £Ssntate the value of
In
J; e*cosxdx,

giving your answer correct to 2 degfnzal places.
(iv) State, with a reason, whether th trapezium rule gives an underestimate

or an overestimate of the trye vplue of the integral in part (iii).

[Cambridge Inteinational AS & A Level Mathematics 9709, Paper 2 Q7 June 2007]
11 The diagram shows the syl y = x? €™ and its maximum point M.

YA

3>
>
X

O

(i) Find the x co-ordinate of M.

(i) Show that the tangent to the curve at the point where x= 1 passes
through the origin.

(i) Use the trapezium rule, with two intervals, to estimate the value of

3,
Lxe"dx,

giving your answer correct to 2 decimal places.

[Cambridge International AS & A Level Mathematics 9709, Paper 2 Q8 November 2007]
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12 The diagram shows a sketch of the curve y = i L for values of x from

3
~0.6 to 0.6. X

YA

S—

>
X

0.6 O 0.6

(i) Use the trapezium rule, with two intervals, to estimate the value of

J'o.e 1 dx

3
—0.6 1+x

b

giving your answer correct to 2 decimal places.

(ii) Explain, with reference to the diagram, why the trapezium rule may be
expected to give a good approximation to the true value of the integral in

this case.
[Cambridge International AS & A Level Mathematics 9709, Paper 3 Q2 June 2005]
KEY POINTS .
kxn+1
1 |kx"dx=="=—+¢
J n+1

2 |le*dx=e*+c¢

erthdy = Leartb 1 ¢
a

3 [Lldx=Inlxl+¢
X

1
Jax+Db

dxzilnlax+b|+c

a4 |cos(ax+ b)dx = ésin(ax +b)+c

.sin(ax +b)dx = —%lcos(ax +b)+c

seclax +b)dx = étan(ax +b)+c

5 You can use the trapezium rule, with # strips of width 4, to find an
approximate value for a definite integral as

h
A= p+ 200+ yyt et 7))
In words this is

Area = % X strip width X [ends + twice middles]

P2

96 as1949x3
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Numerical solution of
equations

v
N

It is the true nature of mankind to learn from his mistakes.
Fred Hoyle

€ Which of the following equations can be solved algebraically, and which cannot?
For each equation find a solution, accurate or approximate.

Numerical solution of equations

i) x2—4x+3=0 (i) X2+ 10x+8=0 () x°=5x+3=0

(ivi x¥*—x=0 (v) e*=4x 0

) |
7

You probably realised that the equatlons X x‘r 3 =0and e*=4x cannot be
solved algebraically. You may have deci raw their graphs, either manually
or using a graphic calculator or comp ackage as in figure 6.1.

fx) =
(2.15, 8.6)

fx) =

(0.357, 1.43)

igure 6.1
The graphs show you that
® x°—5x+ 3 =0 has three roots, lying in the intervals [-2, —1], [0, 1] and [1, 2].

® ¢*=4x has two roots, lying in the intervals [0, 1] and [2, 3].

Note

An interval written as [a, b] means the interval between a and b, including a and b.
This notation is used in this chapter. If a and b are not included, the interval is
written (a, b). You may also elsewhere meet the notation ]a, b[, indicating that
aand b are not included.
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The problem now is how to find the roots to any required degree of accuracy,
and as efficiently as possible.

In many real problems, equations are obtained for which solutions using
algebraic or analytic methods are not possible, but for which you nonetheless
want to know the answers. In this chapter you will be introduced to numerical
methods for solving such equations. In applying these methods, keep the
following points in mind.

e Only use numerical methods when algebraic ones are not available. If you can
solve an equation algebraically (e.g. a quadratic equation), that is the right
method to use.

e Before starting to use a calculator or computer program, always start by
drawing a sketch graph of the function whose equation you are trying to solve.
This will show you how many roots the equation has and their approximate
positions. It will also warn you of possible difficulties with particular methods.
When using a graphic calculator or computer package ensure that the range of
values of x is sufficiently large to, hopefully, find all the roots.

e Always give a statement about the accuracy of an answer (e.g. to 5 decimal
places, or + 0.000005). An answer obtained by a numerical method is
worthless without this; the fact that at some point your calculator display
reads, say, 1.6764705882 does not mean that all these figures are valid.

e Your statement about the accuracy must be obtained from within the
numerical method itself. Usually you find a sequence of estimates of ever-
increasing accuracy.

o Remember that the most suitable method for one equation may not be that
for another.

Interval estimation — change-of-sign methods

Assume that you are looking for the roots of the equation f(x) = 0. This means
that you want the values of x for which the graph of y = f(x) crosses the x axis.
As the curve crosses the x axis, f(x) changes sign, so provided that f(x) is a
continuous function (its graph has no asymptotes or other breaks in it), once
you have located an interval in which f(x) changes sign, you know that that
interval must contain a root. In both of the graphs in figure 6.2 (overleaf), there
is a root lying between a and b.

v
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YA YA

=

o

Q
/7
=Y

0 //L// b

Figure 6.2

You have seen that x> — 5x+ 3 = 0 has roots in the intervals [-2, —1], [0, 1] and
[1, 2]. There are several ways of homing in on such roots systematically. Two
of these are now described, using the search for the root in the interval [0, 1] as
an example.

Decimal search

In this method you first take increments in pef size 0.1 within the interval [0, 1],
working out the value of f(x) = x* — 5x+ 3 tés€ach one. You do this until you
find a change of sign.

x 0.0 0.1 0.2 ‘ 0.3 0.4 0.5 0.6 0.7

f(x) 3.00 2.50 200 ‘ 1.50 1.01 0.53 0.08 | -0.33

There is a sign chanrge,and therefore a root, in the interval [0.6, 0.7] since the
function is continutys. Having narrowed down the interval, you can now
continue with ihgrédments of 0.01 within the interval [0.6, 0.7].

4

X 00 0.61 0.62

£(x) 0.08 0.03 | -0.01

This shows that the root lies in the interval [0.61, 0.62].

Alternative ways of expressing this information are that the root can be taken as
0.615 with a maximum error of + 0.005, or the root is 0.6 (to 1 decimal place).

This process can be continued by considering x=0.611, x=0.612, ... to obtain
the root to any required number of decimal places.

How many steps of decimal search would be necessary to find each of the values
0.012, 0.385 and 0.989, using x = 0 as a starting point?
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When you use this procedure on a computer or calculator you should be aware
that the machine is working in base 2, and that the conversion of many simple
numbers from base 10 to base 2 introduces small rounding errors. This can lead
to simple roots such as 2.7 being missed and only being found as 2.699 999.

Interval bisection

This method is similar to the decimal search, but instead of dividing each interval
into ten parts and looking for a sign change, in this case the interval is divided
into two parts — it is bisected.

Looking as before for the root in the interval [0, 1], you start by taking the
mid-point of the interval, 0.5.

£(0.5) = 0.53, so £(0.5) > 0. Since (1) < 0, the root is in [0.5, 1].

Now take the mid-point of this second interval, 0.75.

£(0.75) =—0.51, so f(0.75) < 0. Since f(0.5) > 0, the root is in [0.5, 0.75].
The mid-point of this further reduced interval is 0.625.

£(0.625) =—0.03, so the root is in the interval [0.5, 0.625].

The method continues in this manner until any required degree of accuracy is
obtained. However, the interval bisection method is quite slow to converge to the
root, and is cumbersome when performed manually.

Investigate how many steps of this method you need to achieve an accuracy of
1, 2, 3 and n decimal places, having started with an interval of length 1.

Error (or solution) bounds

Change-of-sign methods have the great advantage that they automatically
provide bounds (the two ends of the interval) within which a root lies, so the
maximum possible error in a result is known. Knowing that a root lies in the
interval [0.61, 0.62] means that you can take the root as 0.615 with a maximum
error of + 0.005.

Problems with change-of-sign methods

There are a number of situations which can cause problems for change-of-sign
methods if they are applied blindly, for example by entering the equation into a
computer program without prior thought. In all cases you can avoid problems by
first drawing a sketch graph, provided that you know what dangers to look out for.
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The curve touches the x axis

In this case there is no change of sign, so change-of-sign methods are doomed to
failure (see figure 6.3).

f(x) A

><"

0 \
Figure 6.3

There are several roots close together

Where there are several roots close together, it is egSy to"iiss a pair of them.
The equation

flx)=x*-1.9x>+1.11x—0.189=0

has roots at 0.3, 0.7 and 0.9. A sketch ofthe )
curve of f(x) is shown in figure 6.4.

In this case f(0) < 0 and f(1) 70, s¢ you /\ /

know there is a root betweem(%id 1. o) / 03 0709 x

A decimal search wotld show that £(0.3) =0,
so that 0.3 is a roof. /i would be unlikely to

search further (n this interval. Figure 6.4

Interval hise€tibn gives £(0.5) > 0, so you would search the interval [0, 0.5] and
eventuaily arrive at the root 0.3, unaware of the existence of those at 0.7 and 0.9.

Theve is a discontinuity in f(x)

The curve y= p 1 77 has a discontinuity at x = 2.7, as shown by the asymptote in
figure 6.5.
YA
O L.
— 2.7 X
Figure 6.5
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EXERCISE 6A

The equation

converge on a false root at x=2.7.

None of these problems will arise if you start by drawing a sketch graph.

Note: Use of technology

It is important that you understand how each method works and are able, if

+92 323 509 4443, emnil: negal ecture@nmail . comn

5= 0 has no root, but all change-of-sign methods will

v
N

V9 9s12409x3]

necessary, to perform the calculations using only a scientific calculator. However,
these repeated operations lend themselves to the use of a spreadsheet or a
programmable calculator. Many packages, such as Autograph, will both perform the
methods and illustrate them graphically.

1 (i) Show that the equation x> + 3x— 5 = 0 has no turning (stationary) points.

(i) Show with the aid of a sketch that the equation can have only one root,
and that this root must be positive.

(iii) Find the root, correct to 3 decimal places.

(i) How many roots has the equation e* — 3x=0?
(ii) Find an interval of unit length containing each of the roots.

(iii) Find each root correct to 2 decimal places.

(i) Sketch y=2%and y=x+ 2 on the same axes.
(i) Use your sketch to deduce the number of roots of the equation 2* = x + 2.

(iii) Find each root, correct to 3 decimal places if appropriate.

Find all the roots of x*> — 3x+ 1 =0, giving your answers correct to 2 decimal
places.

Find the roots of x> — 5x + 3 = 0 in the intervals [-2, —1] and [1, 2], correct to
2 decimal places, using

(i) decimal search
(ii) interval bisection.

Comment on the ease and efficiency with which the roots are approached by
each method.

(i) Use a systematic search for a change of sign, starting with x=—-2, to locate
intervals of unit length containing each of the three roots of

x3—4x2-3x+8=0.

(ii) Sketch the graph of f(x) = x*> — 4x> — 3x + 8.
(iii) Use the method of interval bisection to obtain each of the roots correct to
2 decimal places.

(iv) Use your last intervals in part (iii) to give each of the roots in the form
a £ (0.5)" where a and n are to be determined.

141
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7 The diagram shows a sketch of the graph of f(x) = e*— x> without scales.

f(x) A f(x) =e¥ x}

N\

(0)

3>
>
X

(i) Use a systematic search for a change of sign to locafe $ntérvals of unit
length containing each of the roots.

(ii) Use a change-of-sign method to find each offthe réots correct to 3 decimal
places.

8 For each of the equations below

(a) sketch the curve

(b) write down any roots

(c) investigate what happetts witen you use a change-of-sign method with a
starting interval of {=49.350.7].

1 X x2

W r=x W= =

Fixed-point iteration

In fixedfpaintiteration you find a single value or point as your estimate for the
value of Xyrather than establishing an interval within which it must lie. This
irfyalyes an iterative process, a method of generating a sequence of numbers by
conitinued repetition of the same procedure. If the numbers obtained in this
manner approach some limiting value, then they are said to converge to this value.

INVESTIGATION

Notice what happens in each of the following cases, and try to find some
explanation for it.

(i) Setyour calculator to the radian mode, enter zero if not automatically
displayed and press the cosine key repeatedly.

(ii) Enter any positive number into your calculator and press the square root key
repeatedly. Try this for both large and small numbers.
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(iii) Enter any positive number into your calculator and press the sequence

repeatedly. Write down the number which appears each time

you press . The sequence generated appears to converge. You may recognise

v
N

the number to which it appears to converge: it is called the Golden Ratio.

I
%
[1]
o
]
=
=2
Rearranging the equation f(x) = O into the form x = F(x) ot
2]
The first step, with an equation f(x) = 0, is to rearrange it into the form x = F(x). %.
Any value of x for which x =F(x) is a root of the original equation, as shown in s
figure 6.6.
When f(x) = x2 — x— 2, f(x) = 0 is the same as x= x? — 2.
YA y=fx)=x>-x-2
1! ;x
§ y=x
: yi=Fx)=x2—2
1 _
: (6] 2 “x
Figure 6.6
The equation x> — 5x + 3 = 0 which you met earlier can be rewritten in a number of
ways. One of these is 5x= x>+ 3, giving
5
x= F(x) = x—+3 .
5
143
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Figure 6.7 shows the graphs of y = xand y = F(x) in this case.

YA y=x

Figure 6.7

This provides the basis for the iterative formula

_ X +3
5

Taking x=1 as a starting point to find the'root in the interval [0, 1], successive

xn+1

approximations are:

x,=1, x,=08, x\c06655 x=06261, x,=0.6192,

x,=0.6182, x, 06181, x,=0.6180, x,=0.6180.

In this case the iteraioivhas converged quite rapidly to the root for which you
were looking.

€ Another way of arranging x° — 5x + 3 = 0 is x = /5x — 3. What other possible

rearyangements can you find? How many are there altogether?

Q ' The iteration process is easiest to understand if you consider the graph. Rewriting
the equation f(x) = 0 in the form x = F(x) means that instead of looking for
points where the graph of y = f(x) crosses the x axis, you are now finding the
points of intersection of the curve y = F(x) and the line y = x.

What you do What it looks like on the graph

e Choose a value, x;, of x Take a starting point on the x axis

e Find the corresponding value of F(x;) ~ Move vertically to the curve y = F(x)

e Take this value F(x,) as the new Move horizontally to the line y=x
value of x, i.e. x, = F(x,)

e Find the value of F(x,) and so on Move vertically to the curve

Www. yout ube. cont negal ect ur e Page 1530f353



what sapp: +92 323 509 4443, enmil: negal ecture@mail . con

YA
y=x
L P2
m
b
[1]
iy
y=F) I
A
ot
e
3
2
=3
1 L -
O X, X, X, X, “x
Figure 6.8
The effect of several repeats of this procedure is shown in figure 6.8. The
successive steps look like a staircase approaching the root: this type of diagram is
called a staircase diagram. In other examples, a cobweb diagram may be produced,
as shown in figure 6.9.
YA
y=Xx
y=F)
(6] X, X5 Xg X4 X, x
Figure 6.9
Successive approximations to the root are found by using the formula
xn+1 = F(xn)'
This is an example of an iterative formula. If the resulting values of x, approach
some limit, g, then a=F(a), and so a s a fixed point of the iteration. It is also a
root of the original equation f(x) = 0. 145
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Note

In the staircase diagram, the values of x, approach the root from one side, but in a
cobweb diagram they oscillate about the root. From figures 6.8 and 6.9 it is clear that
the error (the difference between a and x,) is decreasing in both diagrams.

Accuracy of the method of rearranging the equation

Iterative procedures give you a sequence of point estimates. A staircase diagram,
for example, might give the following.

1, 0.8, 0.6655, 0.6261, 0.6192
What can you say at this stage?

Looking at the pattern of convergence it seems as though th€%soot lies between
0.61 and 0.62, but you cannot be absolutely certain from the%vailable evidence.
To be certain you must look for a change of sign.

£(0.61) =+0.034... £(0.62) =—0.0083...

(D Explain why you can now be quite cesath that your judgement is correct.

Note

Estimates from a cobweb diagram oscillate above and below the root and so
naturally provide yorywwith bounds.

Using diiférent arrangements of the equation

So far only one possible arrangement of the equation x> — 5x+ 3 = 0 has been
uged\ What happens when you use a different arrangement, for example

2=R/5x — 3, which leads to the iterative formula

X, = 3/5x,—3?

The resulting sequence of approximations is:

x =1, x,=1.1486..., x,=1.2236..., x,=12554..,
X, =12679..,  x,=12727..., x,=12745..., X, =1.2752..,
Xg=12755..,  x,,=12756..,  x,=12756..,  x,=12756...

A In the calculations the full calculator values of x, were used, but only the first
4 decimal places have been written down.
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The process has clearly converged, but in this case not to the root for which you

were looking: you have identified the root in the interval [1, 2]. If instead you
had taken x, = 0 as your starting point and applied the second formula, you
would have obtained a sequence converging to the value —1.6180, the root in
the interval [-2, —1].

The choice of F(x)

A particular rearrangement of the equation f(x) = 0 into the form x = F(x) will
allow convergence to a root a of the equation, provided that -1 < F'(a) <1 for
values of x close to the root.

Look again at the two rearrangements of x° — 5x+ 3 = 0 which were suggested.
When you look at the graph of y = F(x) = 3/ 5x — 3, as shown in figure 6.10, you
can see that its gradient near A, the root you were seeking, is greater than 1.

This makes x,,,, = 3/5x, — 3 an unsuitable iterative formula for finding the root

in the interval [0, 1], as you saw earlier.

YA

Figure 6.10

When an equation has two or more roots, a single rearrangement will not usually
find all of them. This is demonstrated in figure 6.11.

A y=F@| / y=x

The gradient of y = F(x) is greater
than 1 (i.e. the gradient of the line y = x)
and so the iteration x,, = F(x,) does not
converge to the root x = b.

The gradient of y = F(x) is less than 1
(i.e. the gradient of the line y = x) and
so the iteration x,,, = F(x,) converges
to the root x = a.

=Y

(6] a b

Figure 6.11

P2

uonesay Julod-paxid
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5
. . . + . .
Pz ACTIVITY 6.2 Try using the iterative formula x = art z > to find the roots in the intervals
m [-2,—1] and [1, 2]. In both cases use each end point of the interval as a starting
point. What happens?
5
Explain what you find by referring to a sketch of the curve y= xTH .
EXERCISE 6B 1 (i) Show that the equation x*> — x— 2 =0 has a root between 1 and 2.

(ii) The equation is rearranged into the form x = F(x), where
F(x)=3x+2.

Use the iterative formula suggested by this rearrangement to find the value
of the root to 3 decimal places.

Numerical solution of equations

2 (i) Show that the equation e — x+ 2 = 0 has a rogCy, the interval [2, 3].
(i) The equation is rearranged into the form = g=* 27
Use the iterative formula suggested by this reafrangement to find the value
of the root to 3 decimal places.

3 (i) Show that the equation e*+ x — €= 0 has a root in the interval [1, 2].
(i) Show that this equation may«e Written in the form x=In(6 — x).
(iii) Use an iterative formula ¥ased on the equation x =In(6 — x) to calculate
the root correct to 3 décimal places.

4 (i) Sketch the curves &.&* and y= x? + 2 on the same graph.
(i) Use your sketclvo explain why the equation e* — x> — 2 = 0 has only one
root.
(i) Rearrange fif¥is equation in the form x = F(x).
(iv) Ugé a6 ilerative formula based on the equation found in part (iii) to
calculate the root correct to 3 decimal places

50\ “Show that x2=In(x+ 1) for x= 0 and for one other value of x.
tii) Use the method of fixed point iteration to find the second value to
3 decimal places.

6 (i) Sketch the graphs of y=xand y = cos x on the same axes, for 0 < x < %
(i) Find the solution of the equation x= cos x to 5 decimal places.

7 The sequence of values given by the iterative formula

_3 2

n+l 4 3
X
n

X

with initial value x, = 2, converges to a.

(i) Use this iteration to calculate & correct to 2 decimal places, showing the
result of each iteration to 4 decimal places.

(ii) State an equation which is satisfied by @ and hence find the exact value of a.

[Cambridge International AS & A Level Mathematics 9709, Paper 2 Q3 June 2005]
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8 The sequence of values given by the iterative formula

2x, 4
==y
3 x?

v
N

X

with initial value x, =2, converges to a.

(i) Use this iterative formula to determine & correct to 2 decimal places,
giving the result of each iteration to 4 decimal places.

g9 as12409x3

(ii) State an equation that is satisfied by & and hence find the exact value of .
[Cambridge International AS & A Level Mathematics 9709, Paper 2 Q2 November 2007]

9 (i) By sketching a suitable pair of graphs, show that the equation
cosx=2—2x,

- . 1
where x is in radians, has only one root for 0 < x < ;.

(ii) Verify by calculation that this root lies between 0.5 and 1.

(iii) Show that, if a sequence of values given by the iterative formula

1

X 1=1—2

- COS X,

converges, then it converges to the root of the equation in part (i).

(iv) Use this iterative formula, with initial value x, = 0.6, to determine this
root correct to 2 decimal places. Give the result of each iteration to
4 decimal places.
[Cambridge International AS & A Level Mathematics 9709, Paper 2 Q7 November 2008]

10 The diagram shows the curve y = x*cos x, for 0 < x < %n, and its maximum
point M.

YA

6] in

(i) Show by differentiation that the x co-ordinate of M satisfies the equation
tan x= 2.
X

(ii) Verify by calculation that this equation has a root (in radians) between
land 1.2.

. . 2 . .
(iii) Use the iterative formula x| = tan™! (x_) to determine this root correct
n

to 2 decimal places. Give the result of each iteration to 4 decimal places.
[Cambridge International AS & A Level Mathematics 9709, Paper 22 Q7 November 2009]
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11 The diagram shows the curve y = xe?* and its minimum point M.

YA

=Y

(i) Find the exact co-ordinates of M.

(ii) Show that the curve intersects the line y = 20 ¢t the point whose
x co-ordinate is the root of the equation

= 11p(20
x—zln(x).

(iii) Use the iterative formula

_17.(20
X1 = zln(xn)’

with initial value &, I3, to calculate the root correct to 2 decimal
places, giviny,the réSult of each iteration to 4 decimal places.

[£ambridge International AS & A Level Mathematics 9709, Paper 2 Q7 June 2009]
12 (i) By sketshillg a suitable pair of graphs, show that the equation
% =2 — x?
has only one root.

(ii) Verify by calculation that this root lies between x=1.3 and x=1.4.

(iii) Show that, if a sequence of values given by the iterative formula
x,,=V2-Inx)
converges, then it converges to the root of the equation in part (i).

(iv) Use the iterative formula x , = V2 -In x,) to determine the root correct
to 2 decimal places. Give the result of each iteration to 4 decimal places.

[Cambridge International AS & A Level Mathematics 9709, Paper 22 Q6 June 2010]
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13 The equation x> — 8x— 13 = 0 has one real root.

v
N

(i) Find the two consecutive integers between which this root lies.

(ii) Use the iterative formula

Gl

X, =(8x +13)

to determine this root correct to 2 decimal places. Give the result of each
iteration to 4 decimal places.

g9 as12409x3

[Cambridge International AS & A Level Mathematics 9709, Paper 32 Q2 November 2009]
14 The equation x> — 2x— 2 = 0 has one real root.
(i) Show by calculation that this root lies between x=1 and x=2.
(ii) Prove that, if a sequence of values given by the iterative formula

_2xn3+2
Ml 3x2_ )

converges, then it converges to this root.

(i) Use this iterative formula to calculate the root correct to 2 decimal
places. Give the result of each iteration to 4 decimal places.

[Cambridge International AS & A Level Mathematics 9709, Paper 3 Q4 June 2009]

1 When f(x) is a continuous function, if f(a) and f(b) have opposite signs, there
will be at least one root of f(x) = 0 in the interval [a, b].

2 When an interval [a, b] containing a root has been found, this interval may
be reduced systematically by decimal search or interval bisection.

3 Fixed-point iteration may be used to solve an equation f(x) = 0. You can
sometimes find a root by rearranging the equation f(x) = 0 into the form
x=F(x) and using the iteration x, , = F(x,).

€ 4 Successive iterations will converge to the root a provided that —1 < F'(a) < 1
for values of x close to the root.
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Further algebra

At the age of twenty-one he wrote a treatise upon the Binomial
Theorem. ... On the strength of it, he won the Mathematical Chair at
one of our smaller Universities.
Sherlock Holmes on Professor Moriarty in
‘The Final Problem’ by Sir Arthur Conan Doyle

How would you find V101 correct to
3 decimal places, without using a calculator?

Many people are able to develop a very

high degree of skill in mental arithmetic,
particularly those whose work calls for quick
reckoning. There are also those who have quite
exceptional innate skills. Shakuntala Devi,
pictured right, is famous for her mathematicdl
speed. On one occasion she found the'231d
root of a 201-digit number in her heads
beating a computer by 12 secgnds™On another
occasion she multiplied 7586369774870 by
2465099745779 in just 2&seconds.

While most mathepaticians do not have

Shakuntala Degi $\high level of talent with

numbers, tiey dG.alquire a sense of when something looks right or wrong. This
often inydlye¥tinding approximate values of numbers, such as \/ﬁ , using
methodsthat are based on series expansions, and these are the subject of the first
pastobthis chapter.

Using your calculator, write down the values of v1.02, v1.04, V1.06, ..., giving
your answers correct to 2 decimal places. What do you notice?

Use your results to complete the following, giving the value of the constant k.
V1.02 = ( 1+002)2~1+002k
V1.04 = ( 1+004)2z1+004k

What is the largest value of x such that V1 + x = 1 + kx is true for the same
value of k?
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The general binomial expansion

In Pure Mathematics 1 Chapter 3 you met the binomial expansion in the form

(1+x)" = 1+(T)x+(g)x2+(g)x3+...+(7)xr+...

which holds when 7 is any positive integer (or zero), that is n € N.

This may also be written as
This is a short way of

writing ‘n is a natural
number’. A natural is any
positive integer or zero.

(1+x)"=1+nx+ n(nz'— D2y nln ~ 13)'(” N 2)x3 +

RICEIUES WUETES| N

which, being the same expansion as above, also holds when n € N.

uoisuedxa |ejwoulq jelauab ay | I v

The general binomial theorem states that this second form, that is

(1+x)"=14+nx+ n(nz'— D2 nln= 13)'(11— 24

+n(n—1(n—2r)'...(n—r+l)xr+m

is true when n is any real number, but there are two important differences to

note when n & N.<

This is a short way

... . .. of writing ‘n is not a
e The series is infinite (or non-terminating). natural number’.

e The expansion of (1 + x)"is valid only if | x| < 1.

Proving this result is beyond the scope of an A-level course but you can assume
that it is true.

Consider now the coefficients in the binomial expansion:

n(n—1) nn—1(n-2) nn—1)(n—2)(n-23)

bLoom 7o 3! 1l ’
When n=0,weget 1 0 0 0 O ... (infinitely many zeros)

n=1 1 1000 ditto

n=2 1 21 00 ditto

n=3 1 3 3 10 ditto

n=4 1 4 6 4 1 ditto

so that, for example

(1+x)?2=1+2x+x2+0x>+0x*+0x>+ ...
(1+x3=1+3x+3x2+x>+0x*+0x°+ ...
(1+x)*=1+4x+6x>+4x> +x*+0x> + ...

155
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Of course, it is usual to discard all the zeros and write these binomial coefficients
in the familiar form of Pascal’s triangle:

1
1 1
1 2 1
1 3 3 1
1 4 6 4 1

and the expansions as

(1+x)?=1+2x+x2
(1+x3=1+3x+3x2+x>
(1+x)*=1+4x+ 6x>+ 4x> + x*

However, for other values of n (where n & N) there are r@ in the row of
e

binomial coefficients and so we obtain an infinite seq f non-zero terms.

For example:

(=3)(=4)

(=3)(=4)(=5)  (=3)(=4)(=5)(=6)
L 2 4]

n=-3 gives 1 -3

2! gﬂ' !

thatis 1 -3 6 — 15

1)1 213 L) _1)(_3)(_3

_1 . 1 2\ 2 2\ 2 N2\ 2\ T2
n=; gives 1 3 > 3 A1
. 1 1 1 5

sothat (14 x)7 =x3(£6x2 —10x3 +15x* + ...
and (1+ x)2 :{bz

PR

4
A But rev& these two expansions are valid only if | x| <1.

S
Q w that the expansion of (1 + x) is not valid when x= 8.

—l2p 1,35 44
g T g —pgX e

N 4

These examples confirm that there will be an infinite sequence of non-zero

coefficients when n & N.

In the investigation at the beginning of this chapter you showed that
/ .l
I+x=1+7x

is a good approximation for small values of x. Notice that these are the first two
terms of the binomial expansion for n= % If you include the third term, the

approximation is

J 1ol 1.2
1+x~1+2x g X"+
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Takeyz1+%x,y=1+%x—éx2andy=\/1+x.

They are shown in the graph in figure 7.1 for values of x between —1 and 1.

uoisuedxa |ejwoulq jelauab ay | I v

-1.0 0.5 0 0.5 1.0 x

Figure 7.1

INVESTIGATION

For n= % the first three terms of the binomial expansion are 1+ %x - %xz.

Use your calculator to verify the approximate result
N ~ 1. 1,2
I+x=1+5x—gx
for ‘small’ values of x.

What values of x can be considered as ‘small’ if you want the result to be correct
to 2 decimal places?

Now take n=-3. Using the coefficients found earlier suggests the approximate result
(1+x)2=1-3x+6x%

Comment on values of x for which this approximation is correct to
2 decimal places.

When | x| < 1, the magnitudes of x?, x3, x%, x>, ... form a decreasing geometric
sequence. In this case, the binomial expansion converges (just as a geometric
progression converges for -1 < r < 1, where ris the common ratio) and has a
sum to infinity.

ACTIVITY 71 Compare the geometric progression 1 —x + x> — x° + ... with the series obtained
by putting n=—1 in the binomial expansion. What do you notice?

To summarise: when 7 is not a positive integer or zero, the binomial expansion
of (1 + x)" becomes an infinite series, and is only valid when some restriction is

placed on the values of x.
157
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The binomial theorem states that for any value of n:

(1+x)"=1+nx+ ”(”2'_ Dy nln= 13)'(”_ I

where
e if n € N, x may take any value;

o ifnEN,|x|<I.

Note

The full statement is the binomial theorem, and the right-hand side is referred to as

the binomial expansion.

EXAMPLE 7.1 Expand (1 — x)~2 as a series of ascending powers of x upotand including the term

in x3, stating the set of values of x for which the expanbios is valid.

SOLUTION

(1+x)" = 1+nx+n(n2'—1)x2+’1(n— 1?))'(n_z)x3+...

Replacing n by -2, and x by (—x),gives$

(14 ()7 =1+ (ke + ER LA

when | —x| <N

It is important to put brackets round the
term —x, since, for example, (—x)? is not

the same as —x2.

which leads to

(1-x)2 =14+2x+3x>+4x> when|x|<1.

Note

In this example the coefficients of the powers of x form a recognisable sequence,
and it would be possible to write down a general term in the expansion. The
coefficient is always one more than the power, so the rth term would be rx"1.

Using sigma notation, the infinite series could be written as

S
r=1
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. . S 1 .
Find a quadratic approximation for and state for which values of  the
Lo . V1+ 2t
expansion is valid.

SOLUTION

L _ 11=(1+2t)‘5

N1+2t (14 21):

The binomial theorem states that

(a+x)"=1+nx+ ”(”27 L2 nn= 13)'(”_ Dy

Remember to put
brackets round the
term 21, since (21)? is
not the same as 2.

(1+207 =1+ (-1 + %(zgz +... when|2r] <1

1
=  (1+203=1-t+3t> when|t| <]

Replacing n by —% and x by 2t gives

Example 7.1 showed how using the binomial expansion for (1 — x)~? gave a
sequence of coefficients of powers of x which was easily recognisable, so that the
particular binomial expansion could be written using sigma notation.

Investigate whether a recognisable pattern is formed by the coefficients in the
expansions of (1 — x)" for any other negative integers 7.

The equivalent binomial expansion of (a + x)"” when # is not a positive integer is
rather unwieldy. It is easier to start by taking a outside the brackets:

(a+x)"= a"(l + Jﬁ)n

The first entry inside the bracket is now 1 and so the first few terms of the
expansion are

(a+ )" = an[l fg] ) w()}

2! a 3! a

X

for <1.
a

Note

Since the bracket is raised to the power n, any quantity you take out must be raised

to the power ntoo, as in the following example.

v
&

IiII

uoisuedxa jejwoulq jeiduab ay
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EXAMPLE 7.3 Expand (2 + x)7 as a series of ascending powers of x up to and including the
term in x2, stating the values of x for which the expansion is valid.

SOLUTION
_ 1
2+ x)73 =
( ) (2+x)°
1
- 3
Notice that this is th
23 (1 " g) otice that this is 73e
same as 23 (1 + %) .
-3
1 X
==|1+=
3]

Take the binomial expansion

(1+x)"=1+nx+ ”(”2!_ D2, nln= 13)!(” - 2)x3®

%(l + %)_3 = %{1 + (-3)(%) + (_3)2(!_ 2‘-I- .. :| when

NUESEE RN
~3 16+16&® x|<2
G

7
@ The chapter began b.ﬁ(%mw you would find V101 to 3 decimal places

without using a ca r. How would you find it?

2+ x
EXAMPLE 7.4 Find a &c approximation for ﬁ, stating the values of x for which the

and replace nby -3 and x by% to give

X
=<
> 1

e sion is valid.
UTION
2+ x) Nl
=2+x)(1—x
(5=
Take the binomial expansion
(1+x)"=1+nx+ ”(”2'_ Do nn= 13)'(” =24

and replace n by —1 and x by (-x?) to give

— R R Y2, ) YARDWAY,
(14 ) =1+ 1) + EUEDEXE L hen |-22)<1
(1-x3)"T=1+x*+... when|x?|<1,ie when|x|<1.
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EXAMPLE 7.5

Multiply both sides by (2 + x) to obtain (2 + x)(1 — x*)™&:

C+x)1-x)"T=2+x)1 +x?)
=2+ x+2x>  when|x|<1.

The term in x> has been omitted
because the question asked for a
quadratic approximation.

Sometimes two or more binomial expansions may be used together. If these
impose different restrictions on the values of x, you need to decide which is the
strictest.

uoisuedxa |ejwoulq jelauab ay | I v

Find a and b such that

S W
(1-2x)(1+3x) ~ 4T

and state the values of x for which the expansions you use are valid.

SOLUTION

; — -1 -1
(l—2x)(1+3x)_(1_2x) (1+3x)
Using the binomial expansion:

(1-2x)"1=1+(-1)(-2x) for|-—2x|<1
and (1+3x)1=1+(-1)(3x) for|3x| <1
= (1 -2x)"1+3x)"=(1+2x)(1-3x)
=1-x (ignoring higher powers of x)

givinga=1and b=-1.
For the result to be valid, both | 2x]| < 1 and | 3x| < 1 need to be satisfied.
[2x]<1 = —%<x<%
and |3x|<1 = —%<x<%
Both of these restrictions are satisfied if —% <x< % This is the stricter

restriction.

Note

The binomial expansion may also be used when the first term is the variable.

For example:

-1
(x+2)"" may be written as (2 + x)™' =21 (1 + %)
and 2x-1)3=[-1(1-2x13
=(=1)3(1-2x3
=—(1-2x73 161
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€ What happens when you try to rearrange v/ x — 1 so that the binomial expansion

can be used?

EXERCISE 7A 1 For each of the expressions below

(a) write down the first three non-zero terms in their expansions as a series of
ascending powers of x

(b) state the values of x for which the expansion is valid

(c) substitute x= 0.1 in both the expression and its expansion and calculate

the percentage error, where

percentage error = absolute error X IOO(y
true value

. ; 1 —
M 1+ S I=x
(v) B3+ x)"! Qvi) (1-x)V4+x

i) LF - g;
<
(i) X2 (viii) 1 @ i) T2 5
x—3 J3 4 (2x-1)
1+ x2 . 2 . 1
(x) =2 (xi) X (xii) —(1 0110

2 (i) Write down the ex cﬂ of (1 + x)>.
(i) Find the first four s in the expansion of (1 — x)™ in ascending powers
of x. For wh ues of x is this expansion valid?

(iii) When th e sion is valid

14+ 7x4+ax2+ b3+ ...

he values of a and b.
[MEI]

*
Write down the expansion of (2 — x)*.

(ii) Find the first four terms in the expansion of (1 + 2x)~* in ascending

powers of x. For what range of values of x is this expansion valid?

(iii) When the expansion is valid

N4
u=l6+ax+bx2+....

(1+2x)°

Find the values of a and b.
[MEI]
4 Write down the expansions of the following expressions in ascending powers
of x, as far as the term containing x°. In each case state the values of x for
which the expansion is valid.

1

. A | ii -2 ii) —————
M (1-x @) (1+2x) M 0207

[MEI]
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_1
(i) Show that - l(1 —}—C) 2.

V4 —x 2 4

(i) Write down the first three terms in the binomial expansion of (1 - E) ?

in ascending powers of x, stating the range of values of x for which this
expansion is valid.

VL 9s12409x3 \] v
W

(i) Find the first three terms in the expansion of %\/i—x) in ascending
4—-x
powers of x, for small values of x. [MEI]

(i) Expand (1 + y)~!, where -1 < y < 1, as a series in powers of y, giving the
first four terms.

-1
(i) Hence find the first four terms of the expansion of (1 + 9—26)

where -1 < % < 1.

-1 -1
2) _x _x[yx
(iii) Show that (1 + x) =iia- 2(1 + 2) .

-1
(iv) Find the first four terms of the expansion of %(1 + %) where —1 < %C <1

-1

(v) State the conditions on x under which your expansions for (1 + %) and
-1

E(1 + E) are valid and explain briefly why your expansions are different.

2 2
[MEI]

Expand (2 + 3x)~2 in ascending powers of x, up to and including the term in
x?%, simplifying the coefficients.
[Cambridge International AS & A Level Mathematics 9709, Paper 3 Q1 June 2007]

Expand (1 + x) V(1 — 2x) in ascending powers of x, up to and including the
term in x%, simplifying the coefficients.

[Cambridge International AS & A Level Mathematics 9709, Paper 3 Q2 November 2008]

2 . . . .
When (1 + 2x)(1 + ax)?, where a is a constant, is expanded in ascending
powers of x, the coefficient of the term in x is zero.
(i) Find the value of a.
(ii) When a has this value, find the term in x° in the expansion of
2, e . .
(1 4 2x)(1 + ax)?, simplifying the coefficient.
[Cambridge International AS & A Level Mathematics 9709, Paper 3 Q5 June 2009]
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Review of algebraic fractions
f(x)

If f(x) and g(x) are polynomials, the expression —== is an algebraic fraction

gkx)
or rational function. It may also be called a rational expression. There are many
occasions in mathematics when a problem reduces to the manipulation of
algebraic fractions, and the rules for this are exactly the same as those for

numerical fractions.

Simplifying fractions

To simplify a fraction, you look for a factor common to both the numerator
(top line) and the denominator (bottom line) and cancel by it.

For example, in arithmetic

15_5x3_3

20 5x4 4
and in algebra

6a _ _2x3xa _ 2

9a> 3x3Xaxa 3a
Notice how you must factorise both the Wumerator and denominator before
cancelling, since it is only possible toycaitcel by a common factor. In some cases
this involves putting brackets in.

2a+4 _ 2@+ NS 2
a*—4 (a+2)(a¢2) (a-2)

Multiplying and/cividing fractions

Multiplyingsfadsioils involves cancelling any factors common to the numerator
and denginiagior. For example:

108 9ab _2X5xa_3x3xaxb_ 6a*

3027 25 3xbxb 5x5  5b
A% with simplifying, it is often necessary to factorise any algebraic expressions
first.
az+3a+2>< 12 _(a+D)(a+2), 3x4
9 a+1 3%x3 (a+1)
_(a+2) 4
3 1
_4(a+2)
3

Remember that when one fraction is divided by another, you change + to x and
invert the fraction which follows the + symbol. For example:

12 . 4 _ 12 w (x+1)
x2—1 x+1 (x+1)(x-1) 4
__3
(x—1)
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Addition and subtraction of fractions

To add or subtract two fractions they must be replaced by equivalent fractions,
both of which have the same denominator.

For example:

2.1_8,3_11
3+4_12+12_12

Similarly, in algebra:

2x . x _8x , 3x _1lx

=242 =

4712 127 12

Notice how you only need
+ 12x here, not 12x2.

1
3x 4x  12x  12x  12x

Il
|
+
|
Il
|

and

You must take particular care when the subtraction of fractions introduces a sign
change. For example:

4x—3_ 2x+1_2(4x—-3)-32x+1)

6 4 12
=8x—6—6x—3
12
:2x—9
12

Notice how in addition and subtraction, the new denominator is the lowest
common multiple of the original denominators. When two denominators have no
common factor, their product gives the new denominator. For example:

2,3 _2=2)+3(y+3)

y+3 y-2  (y+3)(y-2)
_2y—4+3y+9
(3 -2)
_ 5y+5
(r+3)(y-2)

__s5(y+1)
(r+3)(r-2)

It may be necessary to factorise denominators in order to identify common
factors, as shown here.

20 3 __ 2b 3
Z— a+b (a+b)(a-b) (a+b)

_2b-3(a-b) b
(a + b)(a - b) cor(rallrr-:on)fascétlor.

_ 5b-3a
“(a+b)a-0b)

suonoeuy seigehle Jo mainay I v
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EXERCISE 7B Simplify the expressions in questions 1 to 10.
6ba., a Sxy |
1 —XxX— 2 +15xy?2
b op 3 y
x*-9 g 3x-1 X2 +6x+9
x> —9x+18 x+3 5xi+4x—1
4x* =25 6 c12+c1—12>< 3
4x% +20x + 25 5 4a-12
4x*-9 | 2x-3 2p+4
= 8 =+ —4
X+2x+1 x24+x 5 (p )
a? —b? 10 x*+8x+16_ x*+2x—3
2a% + ab — b? x*+6x+9 X%+ 4x

In questions 11 to 24 write each of the expressions as a singlefraction in its
simplest form.

L e 1)
—_ 4 — =
x5 12 3<34

_a 1 o2 3
13 a+1+a—1 x—3+x—2
& 2 2
15 5 0 L e e
x"—4 x+2 \ pPP—-1 p*+1
a+l a+1 (y+2)? y+4
1 \ 2 3
19 +— 20 -
(b, b*+2b+1 b+1
6 2x
21 22 +
%T) 5(x+2) (x+2)?
a—2 1 1 1
3 +2 20°+a—6 #x-2"x T2
<
Partial fr s

Sometimes, it is easier to deal with two or three simple separate fractions than it
is to handle one more complicated one.

For example:

1
(14+2x)(1+ x)
may be written as

2 1
(14+2x) (14+x%)°

WWwW. yout ube. com negal ect ur e Page 17507353



what sapp:

EXAMPLE 7.6

+92 323 509 4443, emnil: negal ecture@nmail . comn

e When — L iswrittenas — 2 — 1 you can then do binomial

(1+2x)(1+ x) (1+2x) (1+x)
expansions on the two fractions, and so find an expansion for the original
fraction.

e When integrating, it is easier to work with a number of simple fractions than a

combined one. For example, the only analytic method for integrating
1 2 __1
(14+2x)(1+ x) (I+2x) (1+x)

application in Chapter 8.

involves first writing it as . You will meet this

This process of taking an expression such as m
2 1

120 (1+2 is called expressing the algebraic fraction in partial fractions.

and writing it in the

form

When finding partial fractions you must always assume the most general numerator
possible, and the method for doing this is illustrated in the following examples.

Type 1: Denominators of the form (ax + b)(cx + d)(ex + f)

Express 4+ X _agasumof partial fractions.
(1+x)(2-x)
Remember: a linear
SOLUTION denominator = a constant
numerator if the fraction is
Assume to be a proper fraction.
4+x _ A B

(l+x)(2—x)=l+x+2—x

Multiplying both sides by (1 + x)(2 — x) gives

4+x=A2-x)+ B(1+x). @

This is an identity; it is true for all values of x.

There are two possible ways in which you can find the constants A and B.
You can either

e substitute any two values of x in O (two values are needed to give two
equations to solve for the two unknowns A and B); or

e equate the constant terms to give one equation (this is the same as putting
x=0) and the coefficients of x to give another.

Sometimes one method is easier than the other, and in practice you will often
want to use a combination of the two.

suooely |eljied q v
W
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Method 1: Substitution

Although you can substitute any two values of x, the easiest to use are x=2 and
x=—1, since each makes the value of one bracket zero in the identity.

4+x=A2—-x)+B(1+x)
x=2 = 4+2=A2-2)+B(1+2)
6=3B = B=2
x=—1 = 4-1=AQ+1)+B(1-1)
3=3A = A=l
Substituting these values for A and B gives

4tx  _ 1, 2
1+x2-x) 1+x 2-x

Method 2: Equating coefficients
In this method, you write the right-hand sig€ef
4+x=AR2—-x)+B(1+x)
as a polynomial in x, and then ¢ompas¢ the coefficients of the various terms.
4+x=2A—-Ax+ B+ By
44+ 1x=(2A+ B) "{-A+ B)x
Equating the constayt terms:  4=2A+ B
Equating the c@efficients of x: 1=-A+B equations in 4 and 5.

Solving tHesd simultaneous equations gives A= 1 and B =2 as before.

9 Iy each of these methods the identity (=) was later replaced by equality (=).
Why was this done?

In some cases it is necessary to factorise the denominator before finding the

partial fractions.

x(5x+7)

x+ (2D as a sum of partial fractions.

SOLUTION

Start by factorising the
denominator fully, replacing
(x2— 1) with (x + I)(x - 1).

x(5x+7) _ x(5x +7)

x+1)(x*-1) Cx+D(x+1)(x—-1)
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There are three factors in the denominator, so write

x(5x+7) __A B C
Rx+D(x+1D)(x-1) 2x+1 x+1 x-1

Multiplying both sides by (2x +1)(x +1)(x — 1) gives
x(5x+7)= Alx+1)(x—1)+B2x+1)(x—-1)+ C2x+1)(x+1)

Substituting x=1 gives: 12 = 6C

Notice how a
combination of the two
methods is used.

= Cc=2

Substituting x=—1 gives: —2 = 2B
= B=-1

Equating coefficients of x* gives: 5= A+ 2B+ 2C

As B=-1and C=2: 5=A-2+14
= A=3
Hence x(5x+7) 3 1 2

(2x+1)(x+1)(x—1)E2x+1_x+1 x—1

In the next example the orders of the numerator (top line) and the denominator
(bottom line) are the same.

— x2 . .
Express Z X 5 as a sum of partial fractions.
- X
SOLUTION

You can also use this
method when the order of
the numerator is greater than
that of the denominator.

Start by dividing the numerator by the denominator.

In this case the quotient is 1 and the remainder is 2.
_ 2

6—x° _ 1+ 2

So
4 — x? 4— x?

Now find 2 2 5.

2 2 __A B
4—-xr (2+x2-x) 2+x 2-x

Multiplying both sides by (2 + x)(2 — x) gives

2=AQ2-x)+B2+x)
2=(2A+2B)+ x(B-A)

Equating constant terms: 2=2A+2B
o) A+B=1 ©)
Equating coefficients of x: 0=B-AsoB=A

Substituting in @ gives A=B= %

suooely |eljied q v
W
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Using these values
1 1

2 =2 2 _ 1 " 1
2+x)(2-x) 2+x 2-x 22+x 22-x)
6—x° 1 1
=1+ +
So T 20+%  22-x
EXERCISE 7C Write the expressions in questions 1 to 15 as a sum of partial fractions.
5 1 6
! (x=2)(x+3) 2 x(x+1) 3 (x—1)(x—4)
x+5 3x 4
Y GoDGx+2) P x-D+D) ® ¥
2 8 x—1 x+2
(x-=1)(3x—1) x?-3x—4 2xr - x
7 2x—1 2x+5
—— M —— 2 ——
2x*+x-6 2x% +3x—20 O 18x*—8
13 6x* +22x +18 14 4x2—25x—§) 45 OX°+13x+10
(x+1D(x+2)(x+3) (ZX+1)(®1)£9€—3) (2x +3) (x> — 4)
Type 2: Denominators of th@n (ax + b)(cx? + d)
2x+3 x? . .
EXAMPLE 7.9 Express D21 4) asa s@o artial fractions.

SOLUTION

You need to assur@umerator of order 1 for the partial fraction with a
4

denominator Q , which is of order 2.
3 A Bx+C Bx + C is the most general
(xz +4) = x—1 + 2 +4 numerator of order 1.

iplying both sides by (x— 1)(x? + 4) gives

2x+3=A(x*+4) + (Bx+ O)(x-1) ®
x=1 = 5=5A = A=1

The other two unknowns, B and C, are most easily found by equating coefficients.
Identity O may be rewritten as

2x+3=(A+B)x*+ (-B+ O)x+ (4A-C)
Equating coefficientsof x> 0=A+B = B=-1
Equating constant terms: 3=4A-C = C=1
This gives

2x+3 _ 1 1-x
(x-1D(x*+4) x-1 x*+4
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Type 3: Denominators of the form (ax + b)(cx + d)?

The factor (cx + d)? is of order 2, so it would have an order 1 numerator in the
partial fractions. However, in the case of a repeated factor there is a simpler form.

Consider dx+5 5
2x+1)
This can be written as %

_ 2(2x+1)+ 3

T (2x+1)?* (2x+1)7?
_ 2 3

S xAD) 2xt1P

Note

In this form, both the numerators are constant.

px+q

( e can be written as
cx +

In a similar way, any fraction of the form

A n B
(ex+d) (cx+d)?

When expressing an algebraic fraction in partial fractions, you are aiming to find

the simplest partial fractions possible, so you would want the form where the
numerators are constant.

x+1 . .
Express —————— as a sum of partial fractions.
PIESS (k=1 (x— 272 P
SOLUTION
Notice that you only
Let x+1 =_4 B c need (x — 2)? here

= + +
(x—=1D(x—=27%" (x-1) (x=2) (x=2) and not (x - 2)°.
Multiplying both sides by (x— 1)(x— 2)? gives

x+1=A(x-2)2+B(x-1)(x=2)+ C(x—-1)

x=1(sothatx—1=0) = 2=A(-1)? = A=2
x=2(sothatx—-2=0) = 3=C

Equating coefficients of x* = 0=A+B = B=-2
This gives
x+1 2 2 3

(x—1)(x=2% x-1 x-2 (x=2)?

suooely |eljied q v
W
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2

EXAMPLE 7.11 Express 52x—— as a sum of partial fractions.
X (x + 1)
SOLUTION
2
Let oXT =3 = é + ﬁ + L
2(x+1) x x* x+1

Multiplying both sides by x?(x + 1) gives
5x2-3=Ax(x+ 1)+ B(x+ 1) + Cx?

x=0 = -3=B
x=-1 = +2=C

Equating coefficients of x>: +5=A+C = A=3
This gives @

SENE T O

562-3 _3 3
Kx+1) x x* x+1 Q
.
EXERCISE 7D 1 Express each of the following fractions a@um of partial fractions.
] S— (i) 2x Giii) —2=2%
(1-3x)(1—-x)* (B M)(x?+1) (x—1)(x+2)
tiv) 2x+1 '\¢2x +x+4 ivi) x?-1
(x—=2)(x*+4) (2x*=3)(x+2) xX(2x+1)
2 2
( “)x—+3 (viii) M (i )4x—_3
v x(3x* —1) \ v 2x*+1)(x+1) . x(2x —1)?

2 Given that

Bx+C
(x +4) (2x+3) (x2+4)

che values of the constants A, Band C.

[MEL, part]
Calculate the values of the constants A, B and C for which
xX*—4x+23 _ A L Bx+C
(x=5)(x*+3) (x=5) (x*+3)
[MEL, part]
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Using partial fractions with the binomial expansion

EXAMPLE 7.12

One of the most common reasons for writing an expression in partial fractions is
to enable binomial expansions to be applied, as in the following example.

Express (x—zicT” in partial fractions and hence find the first three terms of

x+2)
its binomial expansion, stating the values of x for which this is valid.

SOLUTION
2x+7 A B

G-Dx+2) -1 T x+2)

Multiplying both sides by (x— 1)(x + 2) gives
2x+7 =A(x+2)+ B(x-1)

x =1 = 9=34 = A=3
x=-2 = 3=3B = B=-1

This gives
2x+7 3 1

(x=1)(x+2) (x=1) (x+2)

In order to obtain the binomial expansion, each bracket must be of the form
(I£...),giving

2x+7  _ =31
(x—1D(x+2) (1-x) 2(1_'_%)
= 3(1-x)" - l(1 + £)_1 ©
2 2
The two binomial expansions are
—1)(-2
(1—x)‘1=1+(—1)(—x)+%(—x)2+... for|x| <1
~1+x+x?
-1 2
X\ _qan(x (—_IM—_2)(§) x
and (1+2) =1+ 1)(2)+ o > +... for 3 <1
2
~1-%X,L X
=157y

Substituting these in @ gives

_2x+7 n_1{;_x x_z)
TR 3(14+ x+ x%) 2(1 2+4
__7_lx_ 254
2 4 8

The expansion is valid when | x| < 1 and ‘%C ‘ < 1. The stricter of these is | x| < 1.

uoisuedxa jelwoulq a3y} Yy3im suonoeuy jeijaed Buisn I v
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INVESTIGATION

EXERCISE 7E
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Find a binomial expansion for the function

1

f(x)=(1+2x)(1—x)

and state the values of x for which it is valid

(i) by writing itas (1 + 2x)7 (1 —x)!
(ii) by writing it as [1 + (x—2x?)]! and treating (x— 2x?) as one term
(iii) by first expressing f(x) as a sum of partial fractions.

Decide which method you find simplest for the following cases.
(a) When a linear approximation for f(x) is required.

(b) When a quadratic approximation for f(x) is required.

{c) When the coefficient of x" is required.

1 Find the first three terms in ascending powers ot in the binomial expansion
of the following fractions.

(1-3x)(1-x) (2x=1)(x*+1)
(i) 5-2x (iv) 2x +1
(x—DHx+2) (x—2)(x2+4)

A AX g partial fractions as A _, B
2x=INx+2) 2x-1) (x+2)

A and B aré't6 ve found.

where

2 (i) Express

. . 1 .
(ii) Find the\exPansion ofm in the form a + bx+ cx? + ... where a, b and

c aieWg Pe found.
Giye'the range of values of x for which this expansion is valid.

. . 1 ..
(itj) Find the expansion of 2+ ™ far as the term containing x°.
Give the range of values of x for which this expansion is valid.
i . . . 7 —4x .
(iv) Hence find a quadratic approximation for x—D(x+2 2)when | x| is small.

Find the percentage error in this approximation when x=0.1.

[MEI]
3 (i) Expand (2 -x)(1 + x).
Hence express X 5 in partial fractions.
2+ x—
(i) Use the binomial expansion of the partial fractions in part (i) to show that
3x 3 3.2
— = =x—->x"+ ...
2+x—x* 27 4
State the range of values of x for which this result is valid.
[MEL, part]
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8x—6 7 express f(x) in partial fractions.

4 (i) Given that f(x) = m

Hence show that

)
fll)=1-x72-(1-%] .
() =(1-2972-(1-%)
(i) Using the results in part (i), or otherwise, find the x co-ordinates of the
stationary points on the graph of y = f(x).

(i) Use the binomial expansion, together with the result in part (i), to expand
f'(x) in powers of x up to and including the term in x2.

(iv) Show that, when f'(x) is expanded in powers of x, the coefficients of all the
powers of x are positive.

[MEI]

5 (i) Express in partial fractions.

1
2-x)(1+x?

. : . . 10
(i) Hence, given that | x | < 1, obtain the expansion of 2=+
ascending powers of x, up to and including the term in x°, simplifying the

coefficients.

in

[Cambridge International AS & A Level Mathematics 9709, Paper 3 Q9 June 2006]

332+ x . . :
6 (i) Express —————— in partial fractions.
WP b+ P ;
(i) Hence obtain the expansion of % in ascending powers of x,

up to and including the term in x°.
[Cambridge International AS & A Level Mathematics 9709, Paper 3 Q9 November 2005]

2 — x+8x?
1—x)(1+2x)(2+ x)

(i) Hence obtain the expansion of (

7 () Express( in partial fractions.

2— x+8x?
1—x)(1+2x)(2+ x)
of x, up to and including the term in x.

in ascending powers

[Cambridge International AS & A Level Mathematics 9709, Paper 3 Q9 November 2007]

3, es1949x3 \] v
W
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1 The general binomial expansion for n € R is

D=2,

In the special case when n € N, the series expansion is finite and valid

(1+x)"=1+ nx+ ”(”27 D2 nln=

for all x.
When n & N, the series expansion is non-terminating (infinite) and valid
onlyif | x| < I.

2 When n & N, (a + x)” should be written as a"(l + %) before obtaining the

binomial expansion.

3 When multiplying algebraic fractions, you can only cancgiwhen the same
factor occurs in both the numerator and the denomin&tor®

4 When adding or subtracting algebraic fractions,ousfist need to find a
common denominator.

5 The easiest way to solve any equation inyo!ving fractions is usually to
multiply both sides by a quantity whith wiil eliminate the fractions.

6 A proper algebraic fraction with adeltominator which factorises can be
decomposed into a sum of proper partial fractions.
7 The following forms ofpgriiei fraction should be used.

px g __A B C
(ax+D)(cxmd)bex+ ) ax+b cx+d ex+f

px*HqNtT A Bx+C

(ax £D) (e d)  ax+b cox*+d

(P tge+r A B C
(ax+b)(cx+d?  ax+b cx+d (cx+d)?
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Further integration

v
)

T
The mathematical process has a reality and virtue in itself, and once ﬁ
discovered it constitutes a new and independent factor. 3
Winston Churchill (1876-1965) g
«Q
: g
Figure 8.1 shows the graph of y = Jx. g
by
2+
y=Ax
1}
| | | | >
0 1 2 3 4 X
Figure 8.1
€ How does it allow you to find the shaded area in the graph in figure 8.2?
YA
2+ — y=Ax+1
1
| | | >
0 1 2 3 4 x
Figure 8.2
177
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Integration by substitution
The graph of y = v x — 1 is shown in figure 8.3.

The shaded area is given by

[*Vx—1dx =] (x-1ydx.

YA y=4x-1

Figure 8.3 ()

.
You may remember how to investigate %%spection. However, you can also
transform the integral into a simple@ y using the substitution #=x—1to

b 1
get juidu. &
“ O

When you make this sub ion it means that you are now integrating with

respect to a new variaile, namely u. The limits of the integral, and the ‘dx’, must

be written in term@u.

u=1-1=0
u=5-1=4.

x=1 =
x=5 =

du . . .. . . . .
n though — is not a fraction, it is usual to treat it as one in this situation (see

dx

the warning below), and to write the next step as ‘du = dx’.

The integral now becomes:

u=4 1 %4
J wdu=|%
u=0 3 0
2
3
| 2u?
3 Jo
=5l
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This method of integration is known as integration by substitution. It is a very
powerful method which allows you to integrate many more functions. Since you
are changing the variable from x to u, the method is also referred to as integration
by change of variable.

The last example included the statement ‘du = dx’. Some mathematicians are

reluctant to write such statements on the grounds that du and dx may only

be used in the form 9%
dx

,1.e. as a gradient. This is not in fact true; there is a
well-defined branch of mathematics which justifies such statements but it is well
beyond the scope of this book. In the meantime it may help you to think of it as

shorthand for ‘in the limit as dx — 0, % — 1, and so du = 8x’.
X

Evaluate f(x + 1)? dx by making a suitable substitution.
1

SOLUTION
YA y=@+1y?
Letu=x+1.

Converting the limits: x=1 = wu=1+1=2
x=3 = u=3+1=4

Converting dx to du:

azl = du=dx

J.f(x +1)Pdx = Iju3du

—

1l
[
|
N[N
o
w
=Y

Figure 8.4

Can integration by substitution be described as the reverse of the chain rule?

1
)

uonnisqns Aq uoinjesbaju]
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P3 EXAMPLE 8.2 Evaluate J:Zx(xz — 4)% dx by making a suitable substitution.

Notice that 2x is the derivative of the expression in the brackets, x> — 4, and so
u=x?— 4 is a natural substitution to try.

This gives % =2x = du=2xdx
x

Converting the limits: x=3 = wu=9-4 =

Further integration

So the integral becomes:

J:(xz - 4)% 2xdx = Jnufdu

20.3 (to 3 significant tigures)

Note

In the last example there were two expressions multiplied together; the second
expression is raised to a power. Tie two expressions are in this case related, since
the first expression, 2x, is the (eriyative of the expression in brackets, x2 — 4. It was
this relationship that made( t¥igsintegration possible.

EXAMPLE 8.3 Find Jx(x2 + 2)%dx{by " making an appropriate substitution.

SOLUTIOr

Since thisis an indefinite integral there are no limits to change, and the final
amswies will be a function of x.

Bt u=x%+ 2, then:

du _

% 92y = du=xdx You only have xdx in
dx 2 the integral, not 2x dx.
So Jx(xz +2)3dx = j(xz +2)3xdx
— |43l
= ju X 5du
4
=4 +¢
2 4
O
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Always remember, when finding an indefinite integral by substitution, to
substitute back at the end. The original integral was in terms of x, so your final
answer must be too.

By making a suitable substitution, find Jx\/ x—2dx.

SOLUTION

This question is not of the same type as the previous ones since x is not the
derivative of (x— 2). However, by making the substitution # = x— 2 you can still
make the integral into one you can do.

Let u=x— 2, then:

du _

Ix = du=dx

There is also an x in the integral so you need to write down an expression for x
in terms of u. Since u = x— 2 it follows that x = u + 2.

In the original integral you can now replace v x — 2 by u%, dxbyduand xby u+2.

'[x\/x— 2dx = J(u+2)u% du

J(u% + Zu%) du

2
5

=2+ 4+ e
3
Replacing u by x— 2 and tidying up gives %(3x+ 4)(x— 2)% +c

Complete the algebraic steps involved in tidying up the answer above.

1 Find the following indefinite integrals by making the suggested substitution.
Remember to give your final answer in terms of x.

(i) J3x2(x3 +1)dx, u=x>+1 (i) J.2x(x2 +1)°dx, u=x*+1
(iii) J3x2(x3 -2 dx, u=x3-2 (iv) _[x\/ 2x2—5dx, u=2x*-5
(v) |xV2x+1dx,u=2x+1 (vi)j =1 dx, u=x+9

J Nx+9

2 Evaluate each of the following definite integrals by using a suitable
substitution. Give your answer to 3 significant figures where appropriate.

(i) foz(x3 +1)%dx (i) Jin(x— 3)5dx

(iii) ﬁx\/ x—1dx

P3

Vg 9s12409x3g
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3 Find the area of the shaded region for each of the following graphs.

(i) y=6x(x2+ 1)} (i)
YA YA

=Y
(@]

A (Q

=Y

(i) Find the co-ordina C@ oint A and the range of values of x for which the

function is define
(ii) Show that of the shaded region is 1‘;

You ma e substitution u =1 + x useful.
[MEJ]
5 (i) tuting u =1 + x or otherwise, find
(@™ |(1+x)3dx (b) J_lx(l +x)3 dx.
.

ji) By substituting t= 1+ x? or otherwise, evaluate J(l)x\/ 1+ x? dx.
[MEI]

6 (i) Integrate with respect to x.

1
@ 43 (b) 6x(1+ x2)?

NEEES ,
1++x)

(ii) Show that the substitution x = u? transforms L ( dxinto an

integral of the formj k(1+u)du. x
State the values of k, a and b.

Evaluate this integral.
[MEL, adapted|
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Integrals involving exponentials and natural logarithms

v
)

In Chapter 5 you met integrals involving logarithms and exponentials. That work

is extended here using integration by substitution.
. . o 4
EXAMPLE 8.5 By making a suitable substitution, find J‘Oer"2 dx.

SOLUTION
4 4
JOerxz dx= Joexz 2x dx

Since 2x is the derivative of x2, let u = x2.

du _ x = du=2xdx
dx
The new limits are given by x=0 = =0
and x=4 = =16

The integral can now be written as

swyjiefo] jeanjeu pue sjeipuauodxa Buinjoaul sjesbajyu

16, u]lﬁ
.[o etdu = |e"|,
—el6_ o0
=8.89x 10° (to 3 significant figures)
5 2x
EXAMPLE 8.6 EvaluateJ > L dx YA
1x°+3 2x
Y=
SOLUTION el

In this case, substitute
u=x%+3, so that

0 1 5
du =2x = du=2xdx
dx

The new limits are given by
x=1 = u=4

=Y

andx=5 = u=28 Figure 8.5
5 2x _stl
J1x2+3dx_ 4 udu
=[lnu]
4
=In28 —1n4

=1.95 (to 3 significant figures)
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EXAMPLE 8.7

EXAMPLE 8.8

EXERCISE 8B
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The last example is of the form J LE) dx, where f(x) = x* + 3. In such cases the

f(x)

substitution u = f(x) transforms the integral into J i du. The answer is then

Inu+ cor In(f(x)) + ¢ (assuming that u = f(x) is positive). This result may be
stated as the working rule below.

If you obtain the top line when you differentiate the bottom line, the integral is
the natural logarithm of the bottom line. So,
f'(x)

jmdx=1n| flx)|+c

2 5x% +2x d

Evaluatej B 3
1x°+x°+4

SOLUTION

You can work this out by substituting u = x> + x2 € 4 but, since differentiating the
bottom line gives the top line, you could apply the rule above and just write:

2 5,4 [
J%dx: In(x® +x2 +4)
1x°+x°+4 1

= In 40— In6
=1.90 {to 2 significant figures)

In the next example som¢ adiiustment is needed to get the top line into the
required form.

[

LN\,
Evaluate | —— k.
> an

09+

SOLUTIDN

6x°

1
The\differential of x° + 7 is 6x°, so the integral is rewritten as éj 647 X.
0 X

1
[iitegrating this gives %[ln(x6 + 7)]0 or 0.022 (to 2 significant figures).

1 Find the following indefinite integrals.

r)y&Ld Hj_ﬁui_d
R P W52y 9x 1

(iii) Jle2 e dx

2 Find the following definite integrals.
Where appropriate give your answers to 3 significant figures.

3 2 4 x—3
i 2xe*°d ii ———d
(i) .[2 xe o dx (i sz2—6x+9 x
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3 The sketch shows the graph of y= xe*’,

1
)

m
s
= ’ g
O 2 'X g
A
®
(i) Find the area of region A.
(ii) Find the area of region B.
(iii) Hence write down the total area of the shaded region.
2 .
4 The graph of y= —*+ is shown below.
B O = S ux 13
YA
5 4 _
30 2\ -l 0 1 2 ©
Find the area of each shaded region.
5 A curve has the equation y= (x+ 3)e™.
(i) Find d_y
dx 5
(i) Hence find % dx.
e
(i) Find the x and y co-ordinates of the stationary point S on the curve.
: d’y .
(iv) Calculate Epe! at the point S.
What does its value indicate about the stationary point?
(v) Show that the substitution u = e* converts J'w du into j 2 -tcx dx.
u e
€
(vi) Hence evaluate J w du.
1 u [MEL adapted|
185
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6 (i) Use a substitution, such as u?=2x— 3, to find JZxV 2x — 3 dx.

(i) Differentiate x*In x with respect to x. Hence find JM dx.

x
(iii) The function f(x) has the property f'(x) = e,

(a) Find f"(x).
(b) Differentiate f(x*) with respect to x.

[MEI]
7 (i) Find the following integrals.
6 1
fal J 12x+3 dx
x
(b) dx  (Use the substitution v= V9 + x2, or otherwise.
J VI + x? ( )
(ii) (a) Show that d (e™) =—2xe™ @
dx
The sketch below shows the curve with equati xe ™,
y
A
N
~ /] T
(b) Diffe e xe™” and find the co-ordinates of the two stationary
i the curve.
the area of the region between the curve and the x axis for
sx<04.
[MEI]

ex
e¥+1
(i) Find the area of the region enclosed by this curve, the axes and the line x= 2.

for values of x between 0 and 2.

.
Sketch the curve with equation y=

2t
112 +1 dt.
(iv) Compare your answers to parts (ii) and (iii). Explain this result.

(iii) Find the value of Je

9 (i) Differentiate with respect to x
(a) e (b) xe 2

You are given that f(x) = xe 2%,

(ii) Find J'gf(x) dx in terms of k.
(i) Show that "' (x) = 4xe 2**(4x2 —3).
(iv) Show that there is just one stationary point on the curve y = f(x) for

positive x. State its co-ordinates and determine its nature.
[MEI]
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The shaded region R is bounded by the curve and by the lines y = 0 and x = p.

YA

O

=Y

(i) Calculate the x co-ordinate of M.
(ii) Find the area of R in terms of p.
(iii) Hence calculate the value of p for which the area of R is 1, giving your
answer correct to 3 significant figures.
[Cambridge International AS & A Level Mathematics 9709, Paper 3 Q9 June 2005]
11 Let I=J4;dx.
1x(4 —+/x)

(i) Use the substitution u = +/x to show that I= J?mdu.
(ii) Hence show that I = %ln 3.

[Cambridge International AS & A Level Mathematics 9709, Paper 3 Q7 June 2007]

Integrals involving trigonometrical functions

EXAMPLE 8.9

In Chapter 5 you met integrals involving trigonometrical functions. That work is
extended here using integration by substitution.

Find J 2xcos(x?+1) dx.

SOLUTION

Make the substitution u= x2 + 1. Then differentiate.
du
dx

JZxcos(xz +1)dx = Jcosu du

=2x = 2xdx=du

sinu+ ¢
=sin(x*+1)+¢

Notice that the last example involves two expressions multiplied together, namely
2x and cos(x? + 1). These two expressions are related by the fact that 2x

is the derivative of x> + 1. Because of this relationship, the substitution

u= x>+ 1 may be used to perform the integration. You can apply this method to
other integrals involving trigonometrical functions, as in the next example.

1
)

suonoauny jesu3swouohbiy Buinjoaul sjeabajul
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EXAMPLE 8.10

EXAMPLE 8.11

EXAMPLE 8.12
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g
2

Find jo cos x sin® x dx.

Remember that
sin?x means the
same as (sinx)2.

SOLUTION

This integral is the product of two expressions, cos x and (sin x)?.

Now (sinx)? is a function of sin x, and cos x is the derivative of sin x, so you
should use the substitution u = sin x.

Differentiating:
@zcosx = du=cosxdx
dx
The limits of integration need to be changed as well:
x=0 = u=0
x=1 = u=1
2
2 ) )
Therefore '[ cosxsin“xdx= j u?du
0 0
1
-|5]
8
_1
=3
Find j cos’ x dx.
SOLUTION

First write cos® x = cos% cos® x.
Now remember that

cosfirsinx=1 =  cos’x=1-sin’x.
This gives

cos® x=cosx(1 — sin?x)
= COSX— COS X Sin%x

The first part of this expression, cos x, is easily integrated to give sin x.

The second part is more complicated, but you can see that it is of a type that you
have met already, as it is a product of two expressions, one of which is a function
of sin x and the other of which is the derivative of sin x. This can be integrated ei-
ther by making the substitution u = sin x or simply in your head (by inspection).

Jcos3x dx = J (cos x— cos x sinx) dx
= sinx—%sin3x+ c
Find
(i) Jcotxdx

%
(ii) L tanxdx
6
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The ‘top line’ is the
derivative of the
‘bottom line’.

EXERCISE 8C

SOLUTION

1
)

(i) Rewrite cotx as 25X,

mx

Jcotxdxz JM dx
sinx

m
Now you can use the substitution u = sin x. 8
(1]
@=cosx:> du = cosxdx 6
dx o
o
'[C.Oﬂ dx = JL X cosxdszl du
sinx sinx u
=In|u|+c=In|sinx|+c
You may have noticed that the integral J €OSX jxis in the form
f'(x
f(x)
dx=In|f(x) | + ¢, and so you could have written the answer down directly.
H s
(i) J tanxdx= j SINX qx
z I COSX
Adjusting the numerator to make it the derivative of the denominator gives:
J‘g sinx g _ J‘g —sinx
SINX 4. —_ | =Sinx
1COoSX pcosx
3
= [—ln | cosxl] .
6
= [—lnl} - |:—1n
2 2 Use the laws of logs:
1 V3o V3 1
:_1n§+1n\ég HT—IHEZIH(TT—
=In \/5
. Use the laws of logs:
=;In3= InV3=1n3 =1n3
Note
You may find that as you gain practice in this type of integration you become able
to work out the integral without writing down the substitution. However, if you are
unsure, it is best to write down the whole process.
1 Integrate the following by using the substitution given, or otherwise.
(i) cos3x u=3x
(i) sin(1 — x) u=1-x
(iii) sinx cos® x U= cosx
(iv) —SX Uu=2-—cosx
2 —cosx )
(v) tanx U=cosx (write tanx as 31X )
COS X
(vi) sin2x(l + cos2x)? u=1+cos2x
189
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2 Use a suitable substitution to integrate the following.
(i) 2xsin(x?) (ii) cosxesinx

COSX
sin?x

(iv)

3 Evaluate the following definite integrals by using suitable substitutions.

% n
(i) J cos(Zx—E) dx (ii) J4cosxsin3xdx
0 2 0
Jr tanx
(|||)J xsin(x?) dx (iv) r £ 5—dx
0 COS* X

|, ot
) o0 cos?x(1+ tanx) x

4 (i) Use the substitution x = tan 6 to show that @
J 1-x =Jc0529d0.

(1+ xz)2 O
G

(ii) Hence find the value of

1 ]— x? .
J0(1+x2)2dx' @

[Cambridge Internatio & A Level Mathematics 9709, Paper 3 Q4 June 2005]

5 (i) Express cos 0+ (\/3)sin orm R cos(0 — a), where R> 0 and
0<a<im, giving thec alues of Rand c.
2

i H h that . ! de:L
(i) Hence show KJ%OSQH\/s)sinO)z V3

rldge International AS & A Level Mathematics 9709, Paper 3 Q5 June 2007]

6 (i) tutlon x = sin?0 to show that

\/ = J2 sin?60do.

i Hence find the exact value of

F\/(l— )dx

[Cambridge International AS & A Level Mathematics 9709, Paper 3 Q6 November 2005]

The use of partial fractions in integration

(?) Why is it not possible to use any of the integration techniques you have learnt so

far to ﬁndJ‘ 22 dx?
x°—1
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Partial fractions reminder

In Chapter 7 you met partial fractions. Here is a reminder of the work you did
there.

Since x? — 1 can be factorised to give (x+ 1)(x— 1), you can write the expression
to be integrated as partial fractions.
2 __ A, B
x2—1 x-1 x+1

This is true for all values
of x. It is an identity and to

emphasise this point we use

2=A(x+1)+ B(x—1) the identity symbol =.

Letx=1 2=2A = A=1
Let x=-1 2=-2B = B=-1

Substituting these values for A and B gives

2 _ 1 1
x2-1 x-1 x+1

The integral then becomes

2 S D SO I O
sz—ldx_,[x—ldx Jx+1dx.

Now the two integrals on the right can be recognised as logarithms.

Jzz dx=In|x—1|-In|x+1|+¢
x- =1

Here you worked with the simplest type of partial fraction, in which there are two
different linear factors in the denominator. This type will always result in two
fractions both of which can be integrated to give logarithmic expressions.

Now look at the other types of partial fraction.

A repeated factor in the denominator

x+4

(2x——U(x+—U2dx

Find J

SOLUTION

First write the expression as partial fractions:

x+4=A+B+C
2x-1D(x+1?% (2x-1) (x+1) (x+1)°

where x+4=A(x+1)>+B2x-1)(x+1)+ C2x—1).
Let x=-1 3=-3C = C=-1
Letxz% %:A(%)Z = %:%A = A=2

Letx=0 4=A-B-C = B=A-C-4=2+4+1-4=-1

1
)

uonpeabajul ul suopoesy |eiaed jo asn ay)
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Substituting these values for A, Band C gives

x+4 2 1 1
2x-=1(x+1? (@2x-1) (x+1) (x+1)?

Now that the expression is in partial fractions, each part can be integrated
separately.

x+4 2 1 1
J.(Zx—l)(x+l)2 dx:,[(2x—1) dx_,[(x+1)dx_J(x+l)2 dx

The first two integrals give logarithmic expressions as you saw above. The
third, however, is of the form #~2 and therefore can be integrated by using the
substitution u = x+ 1, or by inspection (i.e. in your head).

J‘ x+4

o x+4 L T 1
(2x—1)(x+1)2dx_ln|2x 1] 1n|x+1|+—x+l+c

|21y L 4
x+1 | x+1

A quadratic factor in the denomindvor

x—2

EXAMPLE 8.14 Find m dx.

SOLUTION

First write the expre$gion aS™partial fractions:
x—2 " Ax+ B C

(2 + 20N (x2+2) (x+1)

where £=2=(Ax+B)(x+ 1)+ C(x2+2)
Rearranging gives

x=2=(A+O)x*+(A+B)x+ (B+2C)
Equating coefficients:

x2 = A+C=0
x = A+B=1
constantterms = B+2C=-2

Solving these gives A=1, B=0, C=-1.
Hence

x—2 X 1

(x> +2)(x+1) (x2+2) (x+1)
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EXERCISE 8D

lin|x2+2]=nyx* +2

Notice that (x? + 2) is positive
for all values of x.

nmegal ecture@mi |l . con
_ X _ 1
dx_.[(x2+2)dx J(x+1)dx

_1f 2x _ 1
_2.[(x2+2)d)c J(x+1)dx
=%ln|x2+2|—ln|x+1|+c

=In ‘“x"' ‘+c

+92 323 509 4443, email:

J x—2
(x2+2)(x+1)

Note

If B had not been zero, you would have had an expression of the form ’3)2( IZB

integrate. This can be split into ZAX + ZB .
xX“+2 x“+4+2

The first part of this can be integrated as in Example 8.13, but the second part cannot

to

be integrated by any method you have met so far. If you come across a situation
where you need to find such an integral, you may choose to use the standard result:

1 dx=1 tan‘1( )+ c.
x2+a) = a a

1 Express the fractions in each of the following integrals as partial fractions, and
hence perform the integration.

. 1
0 [t ®

x+1
(i) J—(xz D)o l)dx

1
—d
W sz(l—x) x

. 2x — 4
(il J (C+4)(x+2)

2 Express in partial fractions

_ 3x+4
)= v e

and hence find J; f(x) dx.

3 Ex ress;
p x(2x +

1)

2 dx 1 5
——= =-42In?2
J.l x(2x+1) 2 e

3
4 (i) (a) ExpressW
(b) Hence find

.. 7x—=2
(i) jm dx

3x+3 dx

W oD x+ D)

S5x+1

x+2 (2x+1)2dx

(viii)

i)
e &
I

[MEI, adapted|

in partial fractions. Hence show that

[MEI]

2x) 10 partial fractions.

0.1 3
JO O+0(i—20

giving your answer to 5 decimal places.

1
)

as as1s4exg
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(i) (a) Find the first three terms in the binomial expansion of
3(1+x)71(1-2x)"L

(b) Use the first three terms of this expansion to find an approximation for

0.1 3

————dx.
.[ (1+x)(1-2x)

(c) What is the percentage error in your answer to part (b)?

5 (i) Given that
xXP-x-24 _ B C

P O I e R i

find the values of the constants A, Band C.

X —x=24 @
(i) FlndJ (x+2)(x— 4)d O -

2
6 (i) Given that f(x) = gi_igal_si) = ?:ff ‘FZCJ_Lx , find the values of

L
Band Cand show that A=0.
(ii) Find j f(x) dxin an exact for

(i) Express f(x) as a sum of po g\e X up to and including the term in x*.

Determine the range o s of x for which this expansion of f(x) is valid.

[MEI]
7 (i) Find the valués of &onstants A, B, Cand D such that
% e C D
=A + + =+
X2 ) x xr 2x-1
(ii) Heng€phtW/that
2x° =1
20—l g, 3,1y, ( )
1x(2x —1) 2 2
* [Cambridge International AS & A Level Mathematics 9709, Paper 32 Q10 June 2010]

_ xX*+3x+3
Let {0 = F T e v 3y

(i) Express f(x) in partial fractions.
(i) Hence show that J x)dx=3- %ln 2.

[Cambridge International AS & A Level Mathematics 9709, Paper 3 Q7 June 2008]

Integration by parts

There are still many integrations which you cannot yet do. In fact, many
functions cannot be integrated at all, although virtually all functions can be
differentiated. However, some functions can be integrated by techniques which
you have not yet met. Integration by parts is one of those techniques.
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Find Jx cosx dx.

SOLUTION

The expression to be integrated is clearly a product of two simpler expressions,
xand cos x, so your first thought may be to look for a substitution to enable
you to perform the integration. However, there are some expressions which are
products but which cannot be integrated by substitution. This is one of them.
You need a new technique to integrate such expressions.

Take the expression xsin x and differentiate it, using the product rule.

i(xsinx) =xcosx+sinx

dx
Now integrate both sides. This has the effect of ‘undoing’ the differentiation, so
xsinx=jxcosxdx+ Jsinxdx
Rearranging this gives
'[xcosx dx = xsinx— jsinx dx

=xsinx— (—cosx) + ¢

=xsinx+cosx+c¢
This has enabled you to find the integral of x cos x.

The work in this example can be generalised into the method of integration by
parts. Before coming on to that, do the following activity.

For each of the following

(a) differentiate using the product rule
(b) rearrange your expression to find an expression for the given integral I
(c) use this expression to find the given integral.

(i) y=xcosx Izjxsinxdx

(ii) y=xe** I= J.erzx dx

The work in Activity 8.2 has enabled you to work out some integrals which you
could not previously have done, but you needed to be given the expressions to be
differentiated first. Effectively you were given the answers.

Look at the expressions you found in part (b) of Activity 8.2.
Can you see any way of working out these expressions without starting by
differentiating a given product?

1
)

syied Aq uoneibajul
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The general result for integration by parts
The method just investigated can be generalised.

Look back at Example 8.14. Use u to stand for the function x, and v to stand for
the function sin x.
Using the product rule to differentiate the function uv,
d, o du dv
dx(uv) =Vix + Uy
Integrating gives

uv=J.v@ dx-i—J‘

v
dx dx.

u d
dx
Rearranging gives

ju% dx= uv—Jv% dx.

X

This is the formula you use when you need to integrate by parts.

In order to use it, you have to split the funceoi! you want to integrate into two

simpler functions. In Example 8.15 yqu'split x cos x into the two functions

x and cos x. One of these functions willoe called u and the other %, to fit the

left-hand side of the expressigii. Y& will need to decide which will be which.

Two considerations will heip yotu.

® Asyou want to use c}_;t on the right-hand side of the expression, u should be a
function which"ed¥mes a simpler function after differentiation. So in this
case, u will Lie the function x.

e Asyominced vto work out the right-hand side of the expression, it must be

possibie to integrate the function % to obtain v. In this case, % will be the

filnetion cos x.

S¥ now you can find Jx cos x dx.

_ du _
Put wu=x = e

dv .
and 5 =cosx = wv=sinx
dx

Substituting in
dv 4 du
Judx dx= uv—jvdx dx
gives

chosxdxzxsinx—jl X sin x dx
=xsinx— (—cosx) + ¢

=xsinx+ cosx+ ¢
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Find J2x e*dx.

SOLUTION

First split 2xe* into the two simpler expressions, 2x and e*. Both can be integrated
easily but, as 2x becomes a simpler expression after differentiation and e* does
not, take u to be 2x.

_ du _
u=2x = dx =2
dv o
dx = ¢ = y=e
Substituting in
dv . _ [ du
Judx dx=uv jvdx dx

gives
J2x e¥dx=2xe*— J2e’C dx
=2xe¥—2e*+ ¢

In some cases, the choices of u and v may be less obvious.

Find Jx Inx dx.

SOLUTION

It might seem at first that u should be taken as x, because it becomes a simpler
expression after differentiation.

u=x = @:
dx

Q—lnx

dx

Now you need to integrate In x to obtain v. Although it is possible to integrate
In x, it has to be done by parts, as you will see in the next example. The wrong
choice has been made for u and v, resulting in a more complicated integral.

So instead, let u=1nx.

u=Inx = du _ 1
dx «x
dv 1,
Q=X = v=13x
Substituting in
Ju% dxzuv—Jv% dx
gives
1 1x?
'[xlnxdxz szlnx—'[Z_ dx
x

1 1
= szlnx—Jixdx

1 1
=53x*Inx— x> +¢

1
)

syied Aq uoneibajul
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EXAMPLE 8.18 Find jln x dx.

SOLUTION
You need to start by writing In x as 1In x and then use integration by parts.

As in the last example, let u=Inx.

du _ 1

u=Inx = =
dx «x

Q—l = V=X
dx — -

Substituting in

Ju% dx=uv —Jv% dx

gives
1
Jllnxdxz xlnx—'[xx L dx
=xlnx— j 1 dx
=xlnx—x+¢
Using integration by parts twise
Sometimes it is necessary to ise integration by parts twice or more to complete

the integration successfully,

EXAMPLE 8.19 Find sz sin x dx.

SOLUTION

First split xX*sin x into two: x? and sin x. As x?> becomes a simpler expression after
diffyrentiation, take u to be x2.

u=x2 = du _ 2x
dx
dv .
—— =sinx = Y=—COSX
dx
Substituting in

dv ., du
J.ua dx= W_J‘V_dx dx
gives

sz sinx dx=—x2cosx— |—2x cosx dx

J
=—x2cosx+J2x cosx dx @
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Now the integral of 2xcos x cannot be found without using integration by parts
again. It has to be split into the expressions 2x and cosx and, as 2x becomes a
simpler expression after differentiation, take u to be 2x.

_ du _
u=2x = dx =
dv .
dx = Cosx = y=sinx
Substituting in
dv , du
Ju dx dx=uv— J'de dx
gives

'[Zxcosxdx= 2x sinx— '[2 sinx dx
=2xsinx— (=2cosx) + ¢

=2xsinx+2cosx+ ¢

Soin @ szsinxdx =—x2cosx+2xsinx+2cosx+ c.

The technique of integration by parts is usually used when the two functions are of
different types: polynomials, trigonometrical functions, exponentials, logarithms.
There are, however, some exceptions, as in questions 3 and 4 of Exercise 8E.

Integration by parts is a very important technique which is needed in many other
branches of mathematics. For example, integrals of the form | x f(x) dx are used
in statistics to find the mean of a probability density function, and in mechanics
to find the centre of mass of a shape. Integrals of the form | x? f(x) dx are used in
statistics to find variance and in mechanics to find moments of inertia.

1 For each of these integrals

(a) write down the expression to be taken as u and the expression to be taken

as dv
dx
{(b) use the formula for integration by parts to complete the integration.
(i Jxex dx (ii) Jx cos3x dx
(iii) J(2x+ 1)cosxdx (iv) J.xe‘zx dx
(v) Jx e dx (vi) Jx sin2x dx
2 Use integraton by parts to integrate

i x*lnx (i) 3xe’
(i) 2xcos2x (iv) x*In2x

3 Findjx\/1+ x dx

(i) by using integration by parts
(ii) by using the substitution u=1+x.

1
)

3g os1949x3
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4 Find [2x(x—2)" dx
(i) by using integration by parts
(ii) by using the substitution u=x—2.

5 (i) By writing Inx as the product of Inx and 1, use integration by parts to find
Inx dx.

(ii) Use the same method to find jln 3x dx.
(i) Write down Jlnpx dx where p > 0.

6 Find sz e* dx.

7 Find J(Z —x)2cosx dx.

Definite integration by parts

When you use the method of integration by parts 0w definite integral, it is
important to remember that the term uv on.the right-hand side of the expression
has already been integrated and so should b¥written in square brackets with the
limits indicated.

J'b dv A=

U uv
. dx

b b \Jl/l
—j de} dx

a a

2
Evaluate .[o xe*dx.

SOLUTION
Put 1= = du =1
dx
dy
and dx = e = y=e*
x
Juiystituting in
b dv du
Ludx dx=|uv ) Lvdx dx
gives
2 )
xe¥dx =|xe*| —| edx
0 0 Jo
2 2
=|xe*| —|e*
0 0

=(2e2-0)—(e?—¢%
=2e’—e’+1
=e’+1
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Find the area of the region between the curve y = xcos x and the x axis, between

x=0and x==

SOLUTION

Figure 8.6 shows the region
is to be found.

To find the required area, you
need to integrate the function

P3

whose area YA

48 os12409x3

x cos x between the limits 0 and g o H *
You therefore need to work out

n
2

J xcosx dx.
0

Put Uu=x =
dv

and ~— =COoSX =
dx

Substituting in

b dv
Jaddx

a

gives
g
2 .
xcosxdx= [x sin x]
0

[X sin X]

—

(§+)

=T 5
2

—-1F

du — Figure 8.6
dx

y=sinx

b_J'b du dx

,8Y
. dx

T s
2 2 .
o_,[ sinx dx

0

[=INIE]

- [—COS X]

(=N

X sinx+ cos X]

(o+1)

So the required area is (% - 1) square units.

1 Evaluate these definite integrals.

(i) J; xe>* dx
ﬁﬁ)Jé(x—+1)ede

g

(v) j; xsin2xdx

WWW. yout ube.

(ii) jz(x— 1)cosx dx
(iv) ﬁanx dx

(vi) foz Inx dx

201
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(i) Find the co-ordinates of the points where the graph of y= (2 — x)e™* cuts
the x and y axes.

(i) Hence sketch the graph of y= (2 — x)e™.

(i) Use integration by parts to find the area of the region between the x axis,
the y axis and the graph y= (2 — x)e™

(i) Sketch the graph of y = x sinx from x= 0 to x =7 and shade the region
between the curve and the x axis.
(i) Find the area of this region using integration by parts.

Find the area of the region between the x axis, the line x=>5 and the graph
y=Inx.

Find the area of the region between the x axis and the graph y = x cos x from
x=0tox= %

Find the area of the region between the negative x ax{s ajyd'the graph
y=xVvx+1

(i) using integration by parts

(ii) using the substitution u=x+ 1.

The sketch shows the curve with eqiqtion y= x?In2x.
]
|

y=x%In2x

=Y

0]

Find the x co-ordinate of the point where the curve cuts the x axis.
HHurtce calculate the area of the shaded region using the method of integration by
Parts applied to the product of In2xand x2.
Give your answer correct to 3 decimal places.

[MEI]
Show that J; x*e*dx=e-2.

Show that the use of the trapezium rule with five strips (six ordinates) gives an
estimate that is about 3.8% too high.
Explain why approximate evaluation of this integral using the trapezium rule

will always result in an overestimate, however many strips are used. ME]
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9

10

11

12

(i) Find J x cos kx dx, where k is a non-zero constant.
(ii) Show that
cos(A — B) — cos(A+ B) = 2sin Asin B.

1
)

Hence express 2 sin 5xsin 3x as the difference of two cosines.

m
x
(i) Use the results in parts (i) and (ii) to show that 3
2.
T (1
FxsinSx sin3x dx = 11:1_—2 ]
0 6 [MEI]
Use integration by parts to show that
4
J.zlnxdx =6ln2-2.
[Cambridge International AS & A Level Mathematics 9709, Paper 3 Q3 November 2007]
. a ES
The constant a is such that J.o xe*dx = 6.
(i) Show that a satisfies the equation
1
x=2+e?.
(ii) By sketching a suitable pair of graphs, show that this equation has only
one root.
(i) Verify by calculation that this root lies between 2 and 2.5.
(iv) Use an iterative formula based on the equation in part (i) to calculate the
value of a correct to 2 decimal places. Give the result of each iteration to
4 decimal places.
[Cambridge International AS & A Level Mathematics 9709, Paper 3 Q9 November 2008]
.l . . .
The diagram shows the curve y = e 2* V(1 + 2x) and its maximum point M.
The shaded region between the curve and the axes is denoted by R.
YA
M
R
0 x
(i) Find the x co-ordinate of M.
(ii) Find by integration the volume of the solid obtained when R is rotated
completely about the x axis. Give your answer in terms of 7w and e.
[Cambridge International AS & A Level Mathematics 9709, Paper 3 Q9 June 2008]
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General integration

You now know several techniques for integration which can be used to integrate
a wide variety of functions. One of the difficulties which you may now experience
when faced with an integration is deciding which technique is appropriate! This
section gives you some guidelines on this, as well as revising all the work on
integration that you have done so far.

Look at the integrals below and try to decide which technique you would use
and, in the case of a substitution, which expression you would write as . Do not
attempt actually to carry out the integrations. Make a note of your decisions —
you will return to these integrals later.

. x=35 i, x+
0 Jetis e @ [ @y
(iii) Jxex dx (iv) Jx@x
(v) ‘[M dx @Jtosx sin? xdx
X° +sinx
¢
N\

N

Choosing an appropriatig thod of integration
1

You have now met the fo@ standard integrals.
&

f(x) @x

IS
@ (xeR)| e

sinx (x€R)| —cosx

cosx (x€R)| sinx

If you are asked to integrate any of these standard functions, you may simply
write down the answer.

For other integrations, the following table may help.
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Type of expression to be integrated | Examples Method of integration
Simple variations of any of the cos(2x+1) Substitution may be used, but it should
standard functions e be possible to do these by inspection.
Product of two expressions of the 2xex’ Substitution u = f(x)
form f'(x)g[f(x)] xA(x3+1)°
Note that f'(x) means % [f(x)]
Other products, particularly xe* Integration by parts
when one expression is a small x?sin x
positive integer power of x
or a polynomial in x
Quotients of the form ffgx)) 2)_6,_ : Substitution u = f(x) or by inspection:
* x kIn|f(x)| + ¢
or expressions which can easily sin x )
. where k is known
be converted to this form cos x
Polynomial quotients which x+1 Split into partial fractions and integrate
may be split into partial fractions x(x=1) term by term
x4
xP—x-2
Odd powers of sin x or cos x cos®x Use cos® x + sin? x=1 and write
in form f'(x)g[f(x)]
Even powers of sin x or cos x sin?x Use the double-angle formulae to
cos’x transform the expression before
integrating.

It is impossible to give an exhaustive list of possible types of integration, but the

table above and that on the previous page cover the most common situations that

you will meet.

ACTIVITY 8.3

Now look back at the integrals in the discussion point on the previous page and

the decisions you made about which method of integration should be used for

each one. Now find these integrals.

) x—5
W .[x2+2x—3dx
(iii) jxexdx

2x+ cosx
W |\
X+ sinx

.. x+1
i .[x2+2x—3 dx

(iv) _l‘xe"2 dx

(vi) '[cos xsin?xdx

1
)

uoneiBbalul |elsusn)
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Choose an appropriate method and integrate the following.
You may find it helpful to discuss in class first which method to use.

cos(3x—1) dx (i) Jﬁ dx

el dx (iv) |cos2xdx

4x -1 d
(viii) (x_l)z(x+2) X

dx

(ix)

(xi) |(x+ 1)ex™2x dx (xii)

(xiii) '[xz sin2x dx (xiv) gf)zpc dx

Evaluate the following definite integrals.

i 24 dx B '[24 i '[24 9x

(i) J. m (i) 8$ (iii) ¢ 3x—8 dx
(iv) J sin’x dx C}xz Inx dx

&

2
Evaluate J ﬁx, using the substitution =1+ x>, or otherwise.
041

L4
26» [MEI]

|
J
J
J__JL__
J
|

[}

=

Find J * S in terms of /2.
[MEI]
. o . 2 lnx ..
sing the substitution u = In x, or otherwise, find U x dx, giving your
wer to 2 decimal places.
[MEL, part]
i
Find J " xcos2xdx, expressing your answer in terms of 7.
0 [MEI]

(i) Find jxe‘zx dx.

1 X
(i) Evaluate Jo (4+x9) dx, giving your answer correct to 3 significant figures.

[MEI]
(i) Find J.sin(Zx —3)dx.
2
(i) Use the method of integration by parts to evaluate Jo xeX dx.
X
(i) Using the substitution = x? — 9, or otherwise, find j 2 _gdx.
[MEI]
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1
(i) j; (2x2 + 1)(23 + 3x+ 4) dx

e
(ii)J =5
1 X

[MEI]
10 Find J 2 sin x cos® x dx and Jol te 2t dt.
0 [MEI]
kxn+1
1 jkx" dx= —— + ¢ where k and 7 are constants but n # —1.

2 Substitution is often used to change a non-standard integral into a
standard one.

3 |e¥dx=e*+¢

eux+bdx — leax+b +c
a

dx=1In|x|+c

X =

1
+b

% dx=In|f(x)|+c

dx:% In|ax+b|+c

—n

5

6 | cos(ax+b)dx= ésin(ax+ b)+c

sin(ax + b) dx = —%lcos(ax+ b)+c

—_— — —_— Y/ 0, —
8

seciax+b)dx = %tan(ax +b)+c

7 Using partial fractions often makes it possible to use logarithms to integrate
the quotient of two polynomials.

8 Some products may be integrated by parts using the formulae

Jud— dx uv—Jv% dx
d d
J.au atdx =[wv] - J.av(%édx

1
)

g 9s1949x3
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The greater our knowledge increases, the more our ignorance unfolds.
John F. Kennedy

Suppose you are in a hurry to go out and want to
drink a cup of hot tea before you go.

Differential equations

How long will you have to wait until it is cool
enough to drink?

To solve this problem, you would need to know

something about the rate at which liquids cool at
different temperatures.

Figure 9.1 shows an example of the temperature Q
of a liquid plotted against time. @ .

A \0\
O

time 7 (sec)

Q%wrature 6 (°C)
Y

Figure

Notice that the graph is steepest at high temperatures and becomes less steep as
tid cools. In other words, the rate of change of temperature is numerically
atest at high temperatures and gets numerically less as the temperature drops.
he rate of change is always negative since the temperature is decreasing.

If you study physics, you may have come across Newton’s law of cooling: The
rate of cooling of a body is proportional to the difference in temperature of the
body and that of the surrounding air.

The gradient of the temperature graph may be written as 3—(3 , where 0 is the

temperature of the liquid and ¢ is the time. The quantity 3—? tells us the rate at
which the temperature of the liquid is increasing. As the liquid is cooling, j—f will

. . . dé
be negative, so the rate of cooling may be written as ~dr
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The difference in temperature of the liquid and that of the surrounding air
may be written as 6 — 6, where 6, is the temperature of the surrounding air. So
Newton’s law of cooling may be expressed mathematically as:

do
- 6-6,)
do
or Frin -k(6-6,)
where k is a positive constant.
2
Any equation, like this one, which involves a derivative, such as do dy 0 d_y

b r 2 b
dt’dx  dx
is known as a differential equation. A differential equation which only involves a

first derivative such as % is called a first-order differential equation. One which
2

. o d’y. . .

involves a second derivative such as d_}; is called a second-order differential
X

equation. A third-order differential equation involves a third derivative and

SO On.

In this chapter, you will be looking only at first-order differential equations such
as the one above for Newton’s law of cooling.

By the end of this chapter, you will be able to solve problems such as the tea
cooling problem given at the beginning of this chapter, by using first-order
differential equations.

Forming differential equations from rates of change

If you are given sufficient information about the rate of change of a quantity,
such as temperature or velocity, you can work out a differential equation

to model the situation, like the one above for Newton’s law of cooling. It is
important to look carefully at the wording of the problem which you are studying
in order to write an equivalent mathematical statement. For example, if the
altitude of an aircraft is being considered, the phrase ‘the rate of change of height’
might be used. This actually means ‘the rate of change of height with respect to

o . dh . . .
time’ and could be written as 4 - However, you might be more interested in how

the height of the aircraft changes according to the horizontal distance it has
travelled. In this case, you would talk about ‘the rate of change of height with

. . R . . dh . .
respect to horizontal distance’ and could write this as A where x is the horizontal

distance travelled.

Some of the situations you meet in this chapter involve motion along a straight
line, and so you will need to know the meanings of the associated terms.

The position of an object (+5 in figure 9.2, overleaf) is its distance from the
origin O in the direction you have chosen to define as being positive.

1
)

abueya jo sajes woay suonnenba jeiyussap Bunwiog
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Figure 9.2

The rate of change of position of the object with respect to time is its velocity,
and this can take positive or negative values according to whether the object is
moving away from the origin or towards it.

oo ds
dt

The rate of change of an object’s velocity with respect to time is called its

acceleration, a.

_dv

T dr

Velocity and acceleration are vector quantities but in {nejdimensional motion
there is no choice in direction, only in sense (i.e. whether positive or negative).
Consequently, as you may already have noticed, the conventional bold type for
vectors is not used in this chapter.

An object is moving through a liquid sOxthat the rate at which its velocity
decreases is proportional to its %¢locity at any given instant. When it enters the
liquid, it has a velocity of 5m@™ arfd the velocity is decreasing at a rate of 1 ms~.
Find the differential equa#idn 16 model this situation.

SOLUTION

The rate of chagigg 0f velocity means the rate of change of velocity with respect to

time and s4{gidn beswritten as % As it is decreasing, the rate of change must be
negative, s&

dv

—— X P

dr

dv
or - =—kv

dr

where k is a positive constant.

When the object enters the liquid its velocity is 5ms™, so v=>5, and the velocity
is decreasing at the rate of 1 ms, so

dv
Y _ 1
dt
Putting this information into the equation dv_ gives

dt
1=—kx5 = k=1.
So the situation is modelled by the differential equation

dv _ v
dt 5

Www. yout ube. cont negal ect ur e Page2190f353



what sapp:

EXAMPLE 9.2

EXAMPLE 9.3

+92 323 509 4443, emnil: negal ecture@nmail . comn

A model is proposed for the temperature gradient within a star, in which the
temperature decreases with respect to the distance from the centre of the star at a
rate which is inversely proportional to the square of the distance from the centre.
Express this model as a differential equation.

SOLUTION

In this example the rate of change of temperature is not with respect to time but
with respect to distance. If 8 represents the temperature at a point in the star and
r the distance from the centre of the star, the rate of change of temperature with

respect to distance may be written as — do , SO

dl"
——~ = =

or =
dr r2 dr r2

where k is a positive constant.

Note

This model must break down near the centre of the star, otherwise it would be
infinitely hot there.

The area A of a square is increasing at a rate proportional to the length of its

side s. The constant of proportionality is k. Find an expression for @

dt

K A s
N
Figure 9.3
SOLUTION J
The rate of increase of A with respect to time may be written as daA

de’
As this is proportional to s, it may be written as

dA _
dt_ks

where k is a positive constant.

. . . ds . dA
You can use the chain rule to write down an expression for == in terms of =—

dt dt
ds _ ds. dA
dt dA  dt

1
)

abueya jo sajes woay suonnenba jeiyussap Bunwiog
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You now need an expression for 51—2 Because A is a square
A=¢?
= %—’3 =2s
>
Substituting the expressions for 51—2 and Ccll_? into the expression for g—i
= % = le X ks
= % = %k

1

The differential equation

dv _

= 5¢2
dt

models the motion of a particle, where v is the valotity of the particle in ms™

and tis the time in seconds. Explain the mganing of dv and what the

dt

differential equation tells you about the nigtion of the particle.

A spark from a firework is movirlg ina straight line at a speed which is
inversely proportional to the®quare of the distance which the spark has
travelled from the fireworl. Find an expression for the speed (i.e. the rate of
change of distance travieliegl) of the spark.

The rate at whichsa Sunflower increases in height is proportional to the natural
logarithm of the {ilterence between its final height H and its height h at a
particulartitae/ Find a differential equation to model this situation.

In a ghomital reaction in which substance A is converted into substance B, the
rate of increase of the mass of substance B is inversely proportional to the mass
ef\stibstance B present. Find a differential equation to model this situation.

After a major advertising campaign, an engineering company finds that its
profits are increasing at a rate proportional to the square root of the profits at
any given time. Find an expression to model this situation.

The coefficient of restitution e of a squash ball increases with respect to the
ball’s temperature 6 at a rate proportional to the temperature, for typical
playing temperatures. (The coefficient of restitution is a measure of how
elastic, or bouncy, the ball is. Its value lies between zero and one, zero meaning
that the ball is not at all elastic and one meaning that it is perfectly elastic.)
Find a differential equation to model this situation.
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7

10

11

12

13

A cup of tea cools at a rate proportional to the temperature of the tea above

v
)

that of the surrounding air. Initially, the tea is at a temperature of 95°C and is
cooling at a rate of 0.5°Cs™!. The surrounding air is at 15°C.

Find a differential equation to model this situation.

The rate of increase of bacteria is modelled as being proportional to the
number of bacteria at any time during their initial growth phase.

V6 9s12409x3]

When the bacteria number 2 X 10° they are increasing at a rate of 10° per day.
Find a differential equation to model this situation.

The acceleration (i.e. the rate of change of velocity) of a moving object under
a particular force is inversely proportional to the square root of its velocity.
When the speed is 4ms™! the acceleration is 2ms~. Find a differential
equation to model this situation.

The radius of a circular patch of oil is increasing at a rate inversely proportional

to its area A. Find an expression for d—?

A poker, 80 cm long, has one end in a fire. The temperature of the poker
decreases with respect to the distance from that end at a rate proportional to
that distance. Halfway along the poker, the temperature is decreasing at a rate
of 10°Ccm™.. Find a differential equation to model this situation.

A spherical balloon is allowed to deflate. The rate at which air is leaving the
balloon is proportional to the volume V of air left in the balloon. When the

radius of the balloon is 15cm, air is leaving at a rate of 8 cm®s™!.

Find an expression for (31_1?
A tank is shaped as a cuboid with a square base of side 10 cm. Water runs

out through a hole in the base at a rate proportional to the square root of the
height, hcm, of water in the tank. At the same time, water is pumped into the

tank at a constant rate of 2cm?s!. Find an expression for dh,

dt

213
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INVESTIGATION

Figure 9.4 shows the isobars (lines of equal pressure) on a weather map featuring
a storm. The wind direction is almost parallel to the isobars and its speed is

proportional to the pressure gradient.

i

-~ v &;?} W@?

nautical miles
0° 100 300 500 700

1
L W WL WA
SO
200 400 600

Scale of

Figure 9.4

Draw a line from the point H to the@t L. This runs approximately
perpendicular to the isobars. It 1 gested that along this line the pressure
gradient (and so the wind @ may be modelled by the differential equation

dp .
g asin b
Suggest values m d b, and comment on the suitability of this model.
o/

Solving differe tja equations

general solution of a differential equation

Finding an expression for f(x) from a differential equation involving derivatives
of f(x) is called solving the equation.

Some differential equations may be solved simply by integration.

d
EXAMPLE 9.4 Solve the differential equation é =3x>-2.

SOLUTION
Integrating gives
yzj (3x2-2) dx

y=x-2x+c

WWW. yout ube. com negal ect ur e Page2230f353
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Notice that when you solve a differential equation, you get not just one solution,
but a whole family of solutions, as ¢ can take any value. This is called the general
solution of the differential equation. The family of solutions for the differential
equation in the example above would be translations in the y direction of the
curve y = x> — 2x. Graphs of members of the family of curves can be found in
figure 9.5 on page 217.

The method of separation of variables

It is not difficult to solve a differential equation like the one in Example 9.4,
because the right-hand side is a function of x only. So long as the function can be
integrated, the equation can be solved.

d
Now look at the differential equation %c = xy.

This cannot be solved directly by integration, because the right-hand side is a
function of both x and y. However, as you will see in the next example, you can
solve this and similar differential equations where the right-hand side consists of
a function of x and a function of y multiplied together.

Find, for y > 0, the general solution of the differential equation j—i =Xy.

SOLUTION

The equation may be rewritten as

l1dy _
ydx_x

so that the right-hand side is now a function of x only.

Integrating both sides with respect to x gives
1dy g, -
J-y dx dx = jx dx
dy .
As ax dx can be written as dy

J% dy =dex

Both sides may now be integrated separately.

Since you have been told
y > 0, you may drop the modulus

1
In|y|= sz +tc symbol. In this case, |y| = y.

(?) Explain why there is no need to put a constant of integration on both sides
of the equation.

1
)

suonenbs |ennusaiayyip Huinjog
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You now need to rearrange the solution above to give y in terms of x. Making
both sides powers of e gives

Notice that the right-hand

1
Iny _ yx>tc N W,
eV =e2 side is e+

12 5x2 ¢
= y=eXte and not e + €€,

= y= vl
This expression can be simplified by replacing e with a new constant A.
y= Aer*’
Note

Usually the first part of this process is carried out in just one step.

dy _
dx =Y @
can immediately be rewritten as O
1
—dy = | xdx Q
Jyav=]

This method is called separation of variable@;ah be helpful to do this by
thinking of the differential equation as thoug dy were a fraction and trying to

dx

rearrange the equation to obtain all¢he) terms on one side and all the y terms
on the other. Then just insert arintegration sign on each side. Remember that
dy and dx must both end up @e numerator (top line).

EXAMPLE 9.6 Find the general sol%%\e differential equation j—z =e7.
SOLUTION (b'
Separatin, %@les gives
Ny dy =jdx
’Jey dy =Idx
he right-hand side can be thought of as integrating 1 with respect to x.
e=x+c

Taking logarithms of both sides gives

y=In|x+ c|

A In|x + c| is not the same asIn | x | + c.
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1 Solve the following differential equations by integration.

1
)

Lody i d_y -
(i) dx X (i) dx cosx m
(fii) % =e~ (iv) j—{c = \/; g
2,
2 Find the general solutions of the following differential equations by separating ﬁ
the variables. w
L dy dy X
M So=x W gy,
i & = iv) oL =e
dx X
dy_y p W
M T % v 3 xy
Sdy dy  x(y*+1)
(vu)dx =y“Ccosx (viii) dx y(xz 1)
dy dy xlnx
i — = Y —_— =
(ix) dx xe (x) dx }/2
The particular solution of a differential equation
You have already seen that a differential equation has an infinite number of
different solutions corresponding to different values of the constant of
integration. In Example 9.4, you found that (% =3x? -2 had a general solution
ofy=x3-2x+c
Figure 9.5 shows the curves of the solutions corresponding to some different
values of c.
YA
6 y=x-2x+2(c=2)
y= x> —2x (c=0)
y=x-2x—1(c=-1)
I I I 0 I I [
-3 2/ -1 \\y 2 3 X
6
Figure 9.5 217
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If you are given some more information, you can find out which of the possible
solutions is the one that matches the situation in question. For example, you
might be told that when x= 1, y= 0. This tells you that the correct solution is
the one with the curve that passes through the point (1, 0). You can use this
information to find out the value of ¢ for this particular solution by substituting
the values x=1 and y=0 into the general solution.

y=x>-2x+c¢
0=1-2+c¢

= c=1

So the solution in this case is y= x> - 2x + 1.

This is called the particular solution. @

EXAMPLE 9.7 (i) Find the general solution of the differential eqtteg(% =y
(i) Find the particular solution for which y=1 wheil x=0.

SOLUTION K @ ’
= jdx

(i) Separating the variables gives J‘@
y
(} B
< |’

The general solu@ is y=—

x+c

Figure 9.6 a set of solution curves.

Figure 9.6
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(ii) When x=0, y= 1, which gives

So the particular solution is

1 or __1
YT %

This is the blue curve illustrated in figure 9.6.

EXAMPLE 9.8 The acceleration of an object is inversely proportional to its velocity at any given

time and the direction of motion is taken to be positive.
When the velocity is 1 ms™, the acceleration is 3ms™.

(i) Find a differential equation to model this situation.

(ii) Find the particular solution to this differential equation for which the initial

velocity is 2ms™L.

(iii) In this case, how long does the object take to reach a velocity of 8 ms™!?

SOLUTION
Sodv_k
o dt v
_q,dv_ _ e dv 3
When v= l’dt =3 so k=3, which gives TR

(ii) Separating the variables:
Jv dv = j3 dt
%vz =3t+c¢
When =0, v=2 so ¢= 2, which gives

Wr=3t+2
v:=6t+4

Since the direction of motion is positive

y=~N6t+4

(iii) Whenv=8 64 =6t+4
60=6t = t=10

The object takes 10 seconds to reach a velocity of § ms™.

1

1
)

suonenbs |ennusaiayyip Huinjog
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The graph of the particular solution is shown in figure 9.7.

what sapp: nmegal ect ure@mai | .

VA

The remainder of the curve
fort < 0andv < 2 is not
shown as it is not relevant
to the situation.

S

Sometimes you will be asked to verify the solution 6 erential equation. In
that case you are expected to do two things:

2

/

~Y

O

Figure 9.7

e substitute the solution in the differentia!@aﬁon and show that it works

o show that the solution fits the co@&m you have been given.

EXAMPLE 9.9 Show that sin y=xisa solutic}ﬁ1e differential equation

dy _ 1 @
0 ﬁé;>o

sow1@
siny=x

]

dx
given that y=

S dy
cos y d_ =1
dy__1
dx cosy
. . ) ody 1
Substituting into the differential equation = = N
X - X
LHS: —
cosy

_ 1 _ 1
\/l—xz - \/l—sinzy " cosy

So the solution fits the differential equation.

Substituting x = 0 into the solution sin y = x gives sin y = 0 and this is satisfied by
y=0.

So the solution also fits the particular conditions.
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Find the particular solution of each of the following differential equations.

0 Yoo _ _
(i dx_x_l y=2when x=3

1
)

ody _ -
@) =Xy y=1when x=0

dy
iii = - = =
(i) 3 =xe y=0when x=0

dy
W 3% =

96 9s1949x3

y? y=1when x=1

dy
v 3° =x(y+1) y=0whenx=1

dy _ —
(vi) 37 =y sinx y=1whenx=0
A cold liquid at temperature 0°C, where 6 < 20, is standing in a warm room.
The temperature of the liquid obeys the differential equation

a9 _
q; =2(20-0)
where the time fis measured in hours.
(i) Find the general solution of this differential equation.
(i) Find the particular solution for which 6 =5 when = 0.

(i) In this case, how long does the liquid take to reach a temperature of 18°C?

A population of rabbits increases so that the number of rabbits N (in
hundreds), after ¢ years is modelled by the differential equation

dN _
dt_N'

() Find the general solution for Nin terms of t.
(ii) Find the particular solution for which N=10 when t=0.

(iii) What will happen to the number of rabbits when ¢ becomes very large?
Why is this not a realistic model for an actual population of rabbits?

An object is moving so that its velocity v (: %) is inversely proportional to its

displacement s from a fixed point.

If its velocity is 1 ms™! when its displacement is 2m, find a differential
equation to model the situation.

Find the general solution of your differential equation.

(i) Write in partial fractions.

1
y3=7)
IR 1
(i) Find Jm dy.
(i) Solve the differential equation

dy _
Xx=rB-y)

where x=2 when y =2, giving y as a function of x. 221
[MEI]
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6 Given that kis a constant, find the solution of the differential equation

dy _
a + ky—Zk

for which y =3 when t=0.

Sketch the graph of y against | kf|, making clear how it behaves for large values

of | kt].
[MEI]

7 A colony of bacteria which is initially of size 1500 increases at a rate

proportional to its size so that, after ¢ hours, its population N satisfies the
4N
equation 4.~ = kN.
(i) If the size of the colony increases to 3000 in 20 hours, solve the differential
equation to find N in terms of #.

(ii) What size is the colony when = 80?

(iii) How long did it take, to the nearest minutegfor tite population to increase
from 2000 to 3000?

[MEI]
. x+1 2
(i) Show that o1 1+ FERT
- . : AN
(ii) Find the partial fractions for S DG 1)
(i) Solve the differential eguation
d 3
(xz—l)—yz— ¥4 1)y (where x> 1)
dx
given that y=1 When x= 3. Express y as a function of x. MBI
MEI

A patch gfgtivgollution in the sea is approximately circular in shape. When
first spén tts/radius was 100 m and its radius was increasing at a rate of 0.5m
per minute. At a time t minutes later, its radius is r metres. An expert believes
that, if the patch is untreated, its radius will increase at a rate which is

. 1
proportional to 2

(i) Write down a differential equation for this situation, using a constant of
proportionality, k.

(i) Using the initial conditions, find the value of k. Hence calculate the
expert’s prediction of the radius of the oil patch after 2 hours.

The expert thinks that if the oil patch is treated with chemicals then its

. s L . 1
radius will increase at a rate which is proportional to 2210
(i) Write down a differential equation for this new situation and, using the

same initial conditions as before, find the value of the new constant of
proportionality.
(iv) Calculate the expert’s prediction of the radius of the treated oil patch after

2 hours.
[MEI]
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10 (i) Express in partial fractions.

1
2-x)(1+x) P3

An industrial process creates a chemical C. At time ¢ hours after the start
of the process the amount of C produced is x kg. The rate at which C is m
produced is given by the differential equation

m
dx 3
dr = k2 -x)(1 + x)e”, S,
(]
(]
where k is a constant. Q
(ii) When t=0, x=0 and the rate of production of C is % kg per hour.
Calculate the value of k.
(iii) Show that ln(;_Tx) =—e+ 1 —In2, provided that x < 2.
(iv) Find, in hours, the time taken to produce 0.5kg of C, giving your answer
correct to 2 decimal places.
(v) Show that there is a finite limit to the amount of C which this process can
produce, however long it runs, and determine the value of this limit.
[MEI]
11 (i) Use integration by parts to evaluate j4x cos2x dx.
(ii) Use part (i), together with a suitable expression for cos?x, to show that
'[Sx cos?x dx=2x?+ 2xsin2x + cos2x + c.
(iii) Find the solution of the differential equation
dy _ 8xcos’x
dx y
which satisfies y = 3 when x=0.
(iv) Show that any point (x, y) on the graph of this solution which satisfies
sin2x =1 also lies on one of the lines y=2x+ 1 or y=-2x- 1.
[MEI]
. 1—x . A Bx+C
12 (i) Express ———=—— inthe form —— + ==
DO 00+ T+x " 1+
(ii) Hence show that the solution of the differential equation
dy _ _ y(1-%)
dx  (1+x)(1+x%
given that y=1 when x=0, is
y=-Ltx
V1+x?
(iii) Find the first three terms of the binomial expansion of L
V1+x?
Hence find a polynomial approximation for y = Arx up to the term
in x°. L+ x?
[MEI]
223
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13

14

1
Bx—1)x

A model for the way in which a population of animals in a closed

(i) Express in partial fractions.

environment varies with time is given, for P > %, by

dp
ai - %(SP2 — P)sint

where Pis the size of the population in thousands at time .
(ii) Given that P= %when t=0, use the method of separation of variables to
show that

3P-1)_1
ln( P ) =(1 = cost).

(i) Calculate the smallest positive value of ¢ for whic&.
hat

(iv) Rearrange the equation at the end of part (ii) to s
1
p= 3— e%(l—cost). Q
Hence find the two values between @:htthe number of animals in the

population oscillates.
& [MEI]

(i) Use integration by part chat

lnxdx xlnx—

(ii) leferenuat\ %wnh respect to x, for 0 < x < 725
Hence wr@wn cotxdx, for 0 < x < Tzr‘
(iii) For x 0 do<y< E’ the variables y and x are connected by the

tial equation

dy _ Inx
. dx coty
andyzg when x=e.

Find the value of y when x= 1, giving your answer correct to 3 significant
figures.
Use the differential equation to show that this value of y is a stationary

value, and determine its nature.
[MEJ]
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15

16

17

18

(i) Using partial fractions, find
[ P3
(ii) Given that y = 1 when x = 0, solve the differential equation
m
dy s
=2 = y(4-y), o
- Y4 g,
(]
obtaining an expression for y in terms of x. 8
(i) State what happens to the value of y if x becomes very large and positive.
[Cambridge International AS & A Level Mathematics 9709, Paper 3 Q8 June 2005]
The temperature of a quantity of liquid at time ¢ is 6. The liquid is cooling
in an atmosphere whose temperature is constant and equal to A. The rate of
decrease of 6 is proportional to the temperature differerence (6 — A). Thus 0
and ¢ satisfy the differential equation
do
— =—k(60—- A),
ar (60— A)
where k is a positive constant.
(i) Find, in any form, the solution of this differential equation, given that
0 =4A when t=0.
(ii) Given also that @ = 3A when t= 1, show that k=1In %
(iii) Find 6 in terms of A when ¢ =2, expressing your answer in its simplest
form.
[Cambridge International AS & A Level Mathematics 9709, Paper 32 Q9 November 2009]
The variables x and ¢ are related by the differential equation
adx _ 0
et = cos’y
where t = 0. When t=0, x=0.
(i) Solve the differential equation, obtaining an expression for x in terms of t.
(ii) State what happens to the value of x when t becomes very large.
(iii) Explain why x increases as t increases.
[Cambridge International AS & A Level Mathematics 9709, Paper 32 Q7 June 2010]
An underground storage tank is being filled with liquid as shown in the
diagram (overleaf). Initially the tank is empty. At time f hours after filling
begins, the volume of liquid is Vm? and the depth of liquid is hm. It is given
thatV = 3h°.
The liquid is poured in at a rate of 20 m? per hour, but owing to leakage,
liquid is lost at a rate proportional to h2. When h = 1, % = 4.95.
225
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(i) Show that h satisfies the differential equation

dh_5_ 1
dt m* 20
- - 20m* _ 2000
(ii) Verify that 0072 = 20 + Q0= 0+

(iii) Hence solve the differential equation in part (inobtaining an expression
for tin terms of h.

[Cambridge International AS & A Level.Mathematics 9709, Paper 3 Q8 November 2008]

INVESTIGATION

Investigate the tea cooling problem irtfoduced on page 208. You will need
to make some assumptions abwut'te initial temperature of the tea and the
temperature of the room.

What difference wouiq it make if you were to add some cold milk to the tea and
then leave it to codl?

Would it be hetter ¥ allow the tea to cool first before adding the milk?

1 \Aulifferential equation is an equation involving derivatives such as

dy d?y
dx I dx?

2 A first-order differential equation involves a first derivative only.

3 Some first-order differential equations may be solved by separating the
variables.

4 A general solution is one in which the constant of integration is left in the
solution, and a particular solution is one in which additional information is
used to calculate the constant of integration.

5 A general solution may be represented by a family of curves, a particular
solution by a particular member of that family.
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Vectors

U
W

By relieving the brain of all unnecessary work, a good notation sets it
free to concentrate on more advanced problems.
A.N. Whitehead, 1861-1947

The vector equation of a line

Two-dimensional co-ordinate geometry involves the study of points, given as

aul| e Jo uonenba 10399n 3y

co-ordinates, and lines, given as cartesian equations. The same work may also be
treated using vectors.

. . . .. 3
The co-ordinates of a point, say (3, 4), are replaced by its position vector ( 4) or

3i + 4j. The cartesian equation of a line is replaced by its vector form, and this is
introduced on page 231.

Since most two-dimensional problems are readily solved using the methods of
cartesian co-ordinate geometry, as introduced in Pure Mathematics 1, Chapter 2,
why go to the trouble of relearning it all in vectors? The answer is that vector
methods are very much easier to use in many three-dimensional situations than
cartesian methods are. In preparation for that, we review some familiar two-
dimensional work in this section, comparing cartesian and vector methods.

The vector joining two points

In figure 10.1, start by looking at two points A(2, —1) and B(4, 3); that is the
. . .. P 2 - (4 . ..

points with position vectors OA = 1 and OB = 5 ) alternatively 2i—jand

4i+ 3j.
YA
3 B(#:3)
Wl
/
2 N
} // VI
Vv
1 |o 1 2 4 5 x
_\
- A2, -1
-
227
Figure 10.1
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H
The vector joining A to B is AB and this is given by

— 5 —
AB=A0+O0OB

— —
=-0OA+ OB
— —
=0B-0A
(4 (2)_(2
“3) 1) 4
— (2
Since AB = ( 4), then it follows that the length of AB is given by

H
|AB|=v22+42
/.
You can find the position vectors of points along AB as f@
—
The mid-point, M, has position vector OM, given C
— 1
OM =0A + ;AB .
(2,1 <
(0«
s >
- (J N
In the same way, the posi@vector of the point N, three-quarters of the distance
from A to B, is give

— _2
ON = al 4

1
33
2

.
is possible to find the position vector of any other point of subdivision of
e line AB in the same way.

—
Q A point P has position vector OP = OA + AAB where 1 is a fraction.
Show that this can be expressed as

OP = (1 —2)OA + A0B.

The vector equation of a line

It is now a small step to go from finding the position vector of any point on the
line AB to finding the vector form of the equation of the line AB. To take this
step, you will find it helpful to carry out the following activity.
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The position vectors of a set of points are given by

(33

where 4 is a parameter which may take any value.

A is the Greek
letter ‘lamda’.

S . 6
(i) Show that A =2 corresponds to the point with position vector (7)

(ii) Find the position vectors of points corresponding to values of A of -2, —1,

13
0, o 1, 3.

(iii) Mark all your points on a sheet of squared paper and show that when they
are joined up they give the line AB in figure 10.2.

(iv) State what values of A correspond to the points A, B, M and N.

(v) What can you say about the position of the point if
(a) 0<A<1?
(b) A > 12
(e) A <0?

The number A is called a parameter
and it can take any value. Of course,
you can use other letters for the

parameter such as u, s and 7.

This activity should have convinced you that

= (30

is the equation of the line passing through (2, —1) and (4, 3), written in vector

form.

You may find it helpful to think of this in these terms.

2 Move to the point A with

", 2
position vector | _7 ).
number and may be negative.

YA

A

C &d ther/lJ ’

w
L—T

o}

<

(98}

<

Q}Eﬁt\:{the |

origin.

1 \
0)

I | \: ; 4 s x

- A2, -1

Figure 10.2

3 Move A steps of(i) (i.e. in the
H

direction AB). A need not be a whole

U
W

aul| e Jo uonenba 10399n 3y
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You should also have noticed that when:

A= 0  the point corresponds to the point A
A= 1  the point corresponds to the point B
0<A<1 thepointlies between A and B
A>1  the point lies beyond B
A <0 the point lies beyond A.
The vector form of the equation is not unique; there are many (in fact infinitely

many) different ways in which the equation of any particular line may be
expressed. There are two reasons for this: direction and location.

Direction
2
The direction of the line in the example is ( 4). That mea@ for every
2 units along (in the i direction), the line goes up 4 u in the j direction).
This is equivalent to stating that for every 1 unit a the line goes up 2 units,

corresponding to the equation

QZ *
r=[ 2)4a[!
S
The only difference is that the t%quations have different values of A for
. . 4
particular points. In the ﬁé{ tion, point B, with position vector (3)

corresponds to a valﬁ 1. In the second equation, the value of A for B is 2.
3
The direction %e same as (2], or as any multiple of ( ) such as ( 6)
or . Any of these could be used in the vector equation of the line.
tion

the equation

=(3)+A3

2). " . . .
[ 1) is the position vector of the point A on the line, and represents the point at

which the line was joined. However, this could have been any other point on the
line, such as M(3, 1), B(4, 3), etc. Consequently

()
-(3)+(3)

and
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are also equations of the same line, and there are infinitely many other
possibilities, one corresponding to each point on the line.
Notes

1 Itis usual to refer to any valid vector form of the equation as the vector equation

of the line even though it is not unique.
2 Itis often a good idea to give the direction vector in its simplest integer form:

2 1
for example, replacing (4) with (2)

The general vector form of the equation of a line
If A and B are points with position a and b, then the equation
—  —
r=0A +1AB
may be writtenas  r=a+A(b—a)

which implies r=(1-21)a+A1b.
This is the general vector form of the equation of the line joining two points.
Plot the following lines on the same sheet of squared paper. When you have

done so, explain why certain among them are the same as each other, others are
parallel to each other, and others are in different directions.

o () w3 w0
we=(3)+AG)w ()4 4()

The same methods can be used to find the vector equation of a line in three
dimensions, as shown in this example.
The co-ordinates of A and B are (-2, 4, 1) and (2, 1, 3) respectively.

(i) Find the vector equation of the line AB.
(ii) Does the point P(6, -2, 7) lie on the line AB?
(iii) The point N lies on the line AB.

. _% _% .
Given that 3 | AN | = | NB | find the co-ordinates of N.

SOLUTION

., (-2 (2
(i) a=0A=| 4|andb=0OB=|1
1 3

s (33

U
W

aul| e Jo uonenba 10399n 3y
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The vector equation of a line can be written as

—
r=0A +1AB

-2 4

= r=| 4|+A| -3

1 2

(iiy If P lies on the line AB then for some value of A

B0

Find the value of A for the x co-ordinate.

There are other ways of writing this equation,
for example

)[40

but they are all equivalent to each other.

|

x: 6==2+4+44 = A1=2

Then check whether this value of A givesa y co—o@te of 2andaz
co-ordinate of 7.

y: —2=4-3X2 @.
z: 7#1+2X2

So the point P(6, -2, 7) does n 11\: the line.

— —>
(i) Since 3| AN |=|NB

,N &,e i of the way along the line AB so the value
of A is 1. &

&

ON= CTQLI
4 -1
i
& 1 2 15
So the co-ordinates of N are (-1, 3.25, 1.5).

.
EXERCISE 10A or each of these pairs of points, A and B, write down:

—
(a) the vector AB

—
i) |AB|
(c) the position vector of the mid-point of AB.

(i) Ais(2,3),Bis(4,11).

(ii) Ais(4,3),Bis(0,0).

(i) Ais (—2,-1), Bis (4, 7).
(iv) Ais (=3, 4), Bis (3, —4).
(v) Ais(-10,-8),Bis (-5,4).
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Find the equation of each of these lines in vector form.

U
W

(i)  Joining (2, 1) to (4, 5).

(ii) Joining (3, 5) to (0, 8).

(iii) Joining (-6, —6) to (4, 4).

(iv) Through (5, 3) in the same direction as i +j.
(v}  Through (2, 1) parallel to 6i + 3j.

VOL os1949x3

(vi) Through (0, 0) parallel to (_i)

(vii) Joining (0, 0) to (-2, 8).
(viii) Joining (3, —-12) to (-1, 4).

Find the equation of each of these lines in vector form.

3
(i)  Through (2, 4, —1) in the direction | 6
4

1
(i) Through (1, 0, —1) in the direction | 0
0

(iii) Through (1,0, 4) and (6, 3, -2)
(iv) Through (0,0, 1) and (2, 1, 4)
(v}  Through (1, 2, 3) and (-2, -4, —6)

Determine whether the given point P lies on the line.

1 2
(i) P(5,1,4)and theliner= [SJ + /1[— IJ
4 0

1 2
(i), P(-1,5,1) and the liner= [3] + },[—2]
4 3

1 -2
(iii) P(-5, 3, 12) and the liner = ( 0] + /l[ IJ
-2 5

1 4
(iv) P(9,0,—6) and the liner= [2] + /1[—1}
0 -2

1 2
(v) P(-9,-2,-17) and the liner = [ 3} + ﬂ{ 1}
-2 3

The co-ordinates of three points are A(-1, -2, 1), B( -3, 4, -5) and C(0, -2, 4).

(i)  Find a vector equation of the line AB.
(i) Find the co-ordinates of the mid-point M of AB.
(iii) The point N lies on BC.
. H H . .
Given that 2| BN | = | NC |, find the equation of the line MN.
233
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The intersection of two lines

P3

m Hold a pen and a pencil to represent two distinct straight lines as follows:

o hold them to represent parallel lines;

o hold them to represent intersecting lines;

Vectors

o hold them to represent lines which are not parallel and which do not intersect
(even if you extend them).

In three-dimensional space two or more straight lines which are not parallel and
which do not meet are known as skew lines. In a plane two distinct lines are either
parallel or intersecting, but in three dimensions there are three possibilities: the
lines may be parallel, or intersecting, or skew. The next example illustrates a
method of finding whether two lines meet, and, if they dogafeés, the co-ordinates
of the point of intersection. O

EXAMPLE 10.2 Find the position vector of the point where the following lines intersect.

) - QR

Note here that different letters are u

to avoid confusion. c)\,

or the parameters in the two equations

SOLUTION

+1

When the lines in x the position vector is the same for each of them.
o 1Y _(6), [ 1
- 2) =) T =3

o simultaneous equations for A and u.

ex: 24+A=6+u = A-u=4
y: 342A=1-3u = 2A+3u=-2

Solving these gives A = 2 and u = —2. Substituting in either equation gives

(9

which is the position vector of the point of intersection.
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EXAMPLE 10.3 Find the co-ordinates of the point of intersection of the lines joining A(1, 6) to

B(4, 0), and C(1, 1) to D(5, 3), P3

YA m

Saul] 0M} JO UOI}I8SId3UI 3Y |

Figure 10.3

SOLUTION

— _(4) (1) _( 3
AB={0)7l6) -6
and so the vector equation of line AB is

—
r=0A+1AB

(2
- 519

and so the vector equation of line CD is

— =
r=0C+uCD

Ao

The intersection of these lines is at
(1) 3 (V)
~l6)" M=) Tl T2 235
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x: 1+3A=1+4u = 30— 4u=0 @

y: 6-61=1+2u = 6A+2u=5 @

Solve @ and @ simultaneously:

®: 30— 4u=0
@x2 124 + 4u = 10
Add: 154 =10
= lz%

Substitute 4 = % in the equation for AB:

= r=(o)4)

= =(3) O

The point of intersection has co-ordinates (3, 2).
.

Note

Alternatively, you could have found ;@and substituted in the equation for CD.

N

In three dimensions, lines b2 parallel, they may intersect or they may be skew.

EXAMPLE 10.4 Determine whethe M pair of lines are parallel, intersect or are skew.

1 6

andr=| 3|+u|—4
-2 -2

1 2 4 -1

N =l 2(+4|-3|andr=|-2|+ul 2
-1 4 =5 1

OLUTION

1

443

So the lines are parallel.

-3 6
(i) The vectors 2] and [—4 are in the same direction as
-2

Note the lines are different as one
line passes through (1, -2, 1) and
the other through (1, 3, -2).
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(ii) These lines are not parallel, so either they intersect or they are skew.
If the two lines intersect then there is a point (x, y, z) that lies on both lines.

LA

This gives three simultaneous equations for A and u.

x: 1+2=4-u = 2U+u=3 ©)

©

y: 2-3l==242u = 31+2u=4
z: —-1+4l=-5+u = 4WN-u=-4 ©)

Now solve any two of the three equations above simultaneously.

Using @ and @:
}2}.-{-#:3} - }4/l+2u=6 S d=2u=-1
30+2u=4 30 +2u=4

If these solutions satisfy the previously unused equation (equation @ here)
then the lines meet, and you can substitute the value of A (or ) into
equations @, @ and @ to find the co-ordinates of the point of intersection.

If these solutions do not satisfy equation ® then the lines are skew.

A-—u=-4 ©)

Whend=2andu=-1
APh—u=9+#—-4

As there are no values for A and u that satisfy all three equations, the lines do
not meet and so are skew; you have already seen that they are not parallel.

Note

If the equation of the second line was

HEHRE

then the values of A = 2 and i = -1 would produce the same point for both lines:
X 1 2 5
yl=1] 2|+2-3|=|-4
z -1 4 7
X 4 -1 5
and yl=|-2|-1 2|=|-4|
z 8 1 7

So the lines would intersect at (5, -4, 7).

U
W

Saul] 0M} JO UOI}I8SId3UI 3Y |
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EXERCISE 10B 1 Find the position vector of the point of intersection of each of these pairs
of lines.

ooy (e
S EEO R

(i3] (2]
sG] (o]
e 3) oy

2 Decide whether each of these pairs of lines intersect @allel or are skew.
If the lines intersect, find the co-ordinates of the f intersection.

1 1 9 2

i) r=|—-6|+A]2 and r=|7|+ 3
-1 3 2 T
1 6 2
(i) r=|—-6|+A-9| and r +ul -3
0 -3 & 0 -1

6 1 1 1
[iii)r=|—-4[+41 —2]@91': 4]+,u(—1}
-17

2 5 2
-1 —4 5
(ivr=| 2 and r=| 4|+pyu|l -2
4 6 1
2 4
and r=| 5|[+u/-3
-1 2
¢ 9 1 1 1
ir=| 3|+A] 2| and r=|—-4|+u|-
—4 -3 5 2
2 1 -1 1
wibr=|3[+4] 1 and r=|-3|+ul3
1 -2 -1 2

3 In this question the origin is taken to be at a harbour and the unit vectors

iand j to have lengths of 1 km in the directions E and N.

A cargo vessel leaves the harbour and its position vector ¢ hours later is given by
r, = 12t + 16t.

A fishing boat is trawling nearby and its position at time tis given by

r, = (10— 31)i + (8 + 41)j.
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(i) How far apart are the two boats when the cargo vessel leaves harbour?
(ii) How fast is each boat travelling? P3

(iii) What happens? m

4 The points A(1, 0), B(7, 2) and C(13, 7) are the vertices of a triangle.
The mid-points of the sides BC, CA and AB are L, M and N.

(i) Write down the position vectors of L, M and N.
(i) Find the vector equations of the lines AL, BM and CN.
(i) Find the intersections of these pairs of lines.
(a) AL and BM (b) BM and CN
(iv) What do you notice?

—4 2 4 2
5 Theliner=| 4 |+¢g|—10|meetsr=|—15|+s| —3|at A and meets
-12 11 —-16 =5

-1 1
r= (—29] + t[l} at B. Find the co-ordinates of A and the length of AB.
-3 8

g0L 9s1249x3

6 To support a tree damaged in a gale a tree surgeon attaches wire guys to four of
the branches (see the diagram). He joins (2, 0, 3) to (-1, 2, 6) and (0, 3, 5) to
(=2, -2, 4). Do the guys, assumed straight, meet?

-7 4 3 2
7 Show that the three linesr =| 24 |+¢g| =7 |,r=|—-10 |+s| 2 |and
-4 4 15 -1

-3 8
r= ( 6J + t(—?)] form a triangle and find the lengths of its sides.
6 2

239
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8 The drawing shows an ordinary music stand, which consists of a rectangle
DEFG with a vertical support OA.

G
B

= F
e
= ==

A

\)

o ® c}o

. .. .® .
Relative to axes through the origin O, W]@IS on the floor, the co-ordinates

of various points are given (with dinﬁsions in metres) as:
Ais (0,0,1)  Dis (=0.25, 0} Fis (0.25,0.15, 1.3).
DE and GF are horizontal, Q%g mid-point of DE and B is the mid-point of GF.

Cis on AB so that AC %B.
— — 0
(i) Write dow ector AD and show that EFis | 0.15 |.
0.3

(i) Cal co-ordinates of C.
(iii) tife equations of the lines DE and EF in vector form.

L g

[MEL part]

The angle een two lines

In Pure Mathematics 1, Chapter 8 you learnt that the angle, 8, between two

a, b
vectorsa = (‘ZZ} and b = [b;} can be found using the formula:

a3 by
cos O = b a
] >
where a.b is the scalar productanda.b=a,b, + a,b, + a,b.. Figure 10.4
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—4 2
(i) Find the angle between the vectors [ 3} and [— IJ.
0 3

-9 2
(ii) Verify that the vectors (—2] and {—3] are perpendicular.

4 3
SOLUTION
—4
(i) Let az[S] = |a|=y (-4 +3*+0*=5
0

2
w ) = i
3

The scalar producta.b is

-4\ ( 2
[3}{4J=e@x2+3xpn+0x3=—u

0 3
e a.b .
Substituting into cos 6 = gives:
|a[|b]
=11
cosf = ——=
5v14
= 0 =126.0°

(i) When two vectors are perpendicular, the angle between them is 90°.

Since c0s90°=0thena.b=0.

So if the scalar product of two non-zero vectors is zero then the vectors are

perpendicular.
-9 2
2| =3|=(=9)x2+(=2)x(=3)+4x3
4 3
=(-18)+6+12
=0

Therefore, the two vectors are perpendicular.

Even if two lines do not meet, it is still possible to specify the angle between them.
The lines /and m shown in figure 10.5 do not meet; they are described as skew.

Figure 10.5

U
W

saul] om} usamiaq ajbue ay
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The angle between them is that between their directions; it is shown in figure 10.5
as the angle 0 between the lines / and m', where m' is a translation of the line m to
a position where it does intersect the line /.

Find the angle between the lines

) = -6

SOLUTION 5 3
The angle between the lines is the angle between their directions {— IJ and [0]

a.b ‘<$:\ -1 1
Using cos 0 = —
i |al|b] O

2X3+(=1)x0+(-1)x1

cosf =
\/22+(— P+ (=1 x V32 + 02+ 12
L 2
cos) =———— @
\Ex\/_
= 0= 498°
0
Rememberl— 0 ]= 1 0— 0

In questions 1 to 5 d the angle between each pair of lines.

6 2
r= 1 and r=|10|+¢|1
3 4 1
7 1
¢ 1 and r=| 0|+t 2
4 -3 -1
4 3 5 2
3 r=| 2|+s 7 and r=|1|+¢t] 8
-1 —4 0 -5

r=ti-k)

4 r=2i+3j+4k+si+j—-k) and

5 r=i-2j—k+s2i+3j+2k) and r=2i+j+tk
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6 The diagram shows an extension to a house. Its base and walls are rectangular

and the end of its roof, EPF, is sloping, as illustrated. P3
Q2,54 m
m
?
m G (4,5,3) 3
]
1]
2.1, 4) o
A )
E |
0,0,3) 1 F
O D B (4,5,0)
(0,0, 0) o A

(i) Write down the co-ordinates of A and F.
(i) Find, using vector methods, the angles FPQ and EPF.

The owner decorates the room with two streamers which are pulled taut. One
goes from O to G, the other from A to H. She says that they touch each other
and that they are perpendicular to each other.

(iii) Is she right?
7 The points A and B have position vectors, relative to the origin O, given by
—> —>
OA=i+2j+3k and OB=2i+j+3k
The line [ has vector equation
r=(1-20i+(5+0j+(2 -0k

(i) Show that I does not interesect the line passing through A and B.

(i) The point P lies on /and is such that angle PAB is equal to 60°. Given
that the position vector of P is (1 — 2£)i+ (5 + 1)j + (2 — )k, show that
312+ 7t+ 2 =0. Hence find the only possible position vector of P.

[Cambridge International AS & A Level Mathematics 9709, Paper 3 Q10 June 2008]

243
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The perpendicular distance from a point to a line

EXAMPLE 10.7

The scalar product is also useful when determining the distance between a point
and a line.

Find the shortest distance from point P(11, =5, —3) to the line [ with equation

1 -3
r=|5|+A] 1/
0 4

SOLUTION

—
The shortest distance from P to the line /is | NP | where N is a point on the line [

and PN is perpendicular to the line L @

Figure 10.6 0&

You need to find the co- ordl@ of N and then you can find | NP |
N lies on the line 1 Let th a ue of A at N be ¢.
So, relative to the or

1—3t
5+t

— -
=0P-ON

¢ 11 (1-3¢t
—5|—| 5+¢
-3 4t
10 + 3¢
—10—t¢
—3—4¢

—
As NP is perpendicular to the line /,

When two vectors are
perpendicular, their
scalar product is 0.

The direction of
the line /
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_ [10+3x(—2)] [4]
and NP =| -10-(-2) |=|-8

So

+92 323 509 4443, emnil: negal ecture@nmail . comn

—, (-3} (10+3t) (-3
NP.| 1|=[-10-¢[] 1
4) \-3-4r) | 4

=(10+3t) X (-3)+(-10—t) X 1+ (-3 —41) x4
=-30-9t—10—t— 12— 16¢
=-52 — 26t

The scalar product is 0, so

52-26t=0 = t=-2

. . . ﬂ H .
Substituting t=—2 into ON and NP gives

R

—3-4x(=2) 5
——
INP | =42+ (=8)2 + 52
=105
=10.25 units

1 For each point P and line [ find

(a) the co-ordinates of the point N on the line such that PN is perpendicular

to the line
(b) the distance PN.

0 -1
(i) P(=2,11,5) and r=| 2|+t¢t| 2
-3 5
2 1
(ii) P(7,-1,6) and r=|1|+t|-2
3 4
1 -1
(iii) P(8,4,-1) and r=| 5|+¢t|/-2
-3 0

Find the perpendicular distance of the point P(-7, -2, 13) to the line

0

Find the distance of the point C(0, 6, 0) to the line joining the points
A(=4,2,-3) and B(=2, 0, 1).

U
W

aol asisiexg
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4 The room illustrated in the diagram has rectangular walls, floor and ceiling.
A string has been stretched in a straight line between the corners A and G.

G F
zZA string
E
(0,0,3) D
Y
y (0,4,0) B
T spider
0(0,0,0) A X
(5,0,0

The corner O is taken as the origin. A is (5, 0, 0), C@, 4,0)and D is
(0, 0, 3), where the lengths are in metres.

(i) Write down the co-ordinates of G. .
. — o
(i) Find the vector AG and the 1eng§)@ string |AG|.

(iii) Write down the equation of th&Jitte AG in vector form.
A spider walks up the string,@ing from A.

(iv) Find the position v the spider when it is at Q, one quarter of the

way from A to G, ind the angle OQG.
(v) Show that w, &he spider is 1.5 m above the floor it is at its closest point
to O, and.fi ow far it is then from O.
[MEI]

5 The ;@ illustrates the flight path of a helicopter H taking off from an
airpost.

“ordinate axes Oxyz are set up with the origin O at the base of the airport
ntrol tower. The x axis is due east, the y axis due north and the z axis vertical.

The units of distance are kilometres throughout.

zA

Control
tower

x (E)
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The helicopter takes off from the point G.

‘
W

The position vector r of the helicopter t minutes after take-off is given by

r=(1+10i+(0.5+21)j+2rk.

(i) Write down the co-ordinates of G.
(i) Find the angle the flight path makes with the horizontal.
(This angle is shown as 6 in the diagram.)
(i) Find the bearing of the flight path.
(This is the bearing of the line GF shown in the diagram.)
(iv) The helicopter enters a cloud at a height of 2 km.
Find the co-ordinates of the point where the helicopter enters the cloud.

auejd e jo uonenbs 10399n ay |

(v) A mountain top is situated at M(5, 4.5, 3).
Find the value of t when HM is perpendicular to the flight path GH.

Find the distance from the helicopter to the mountain top at this time.
[MEI]

The vector equation of a plane

€ Which balances better, a three-legged stool or a four-legged stool? Why?
What information do you need to specify a particular plane?

I

.i

i
i,
L
i
i

i
¥
i

There are various ways of finding the equation of a plane and these are given in
this book. Your choice of which one to use will depend on the information you

are given.
247
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€ Finding the equation of a plane given three points on it

A There are several methods used to find the equation of a plane through three
given points. The shortest method involves the use of vector product which is
beyond the scope of this book. The method given here develops the same ideas
as were used for the equation of a line. It will help you to understand the extra
concepts involved, but it is not a requirement of the Cambridge syllabus.

Vector form

To find the vector form ogle eqlﬂion of the plane through the points A, B and
C (with position vectors OA =a, OB =b, OC =¢), think o ting at the origin,
travelling algng OA_t_()) join the plane at A, and then ani ahce in each of the

directions AB and AC to reach a general point R with tion vector r, where

— = —
r =0A+1AB+uAC.

_ 5 5 —
OR=0A+AAB+uAC

¢ —
1s a vector form of the equation of the plane. Since OA =a, AB=b —a and

C=c—a, it may also be written as

r=a+A(b—a)+u(c—a).
EXAMPLE 10.8 Find the equation of the plane through A(4, 2, 0), B(3, 1, 1) and C(4, -1, 1).

SOLUTION

.y (4
OA=|2
0
— — — (3 4 -1
AB=0OB-OA=|1|-|2]|=|-1
1 0 1
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. (4) (4 0
AC=0C-0OA=|-1|—-|2|=|-3
1 0 1
_ — = —
So the equation r = OA + AAB + uAC becomes
4 -1 0
r=|2|+A -1 |+u| -3
0 1 1
This is the vector form of the equation, written using components.

Cartesian form

You can convert this equation into cartesian form by writing it as

A

and eliminating A and u. The three equations contained in this vector equation

aue|d e jo uonenba 1039an ay |

may be simplified to give

A =—x+4 ©)
A+3u=—y+2 ©)
A+u =z O

Substituting @ into @ gives
—Xx+4+3u=—y+2
3u=x—y-2
u=3(x-y-2)
Substituting this and @ into @ gives
—x+4+%(x—y—2)=z
—3x+12+x-y—-2=3z
2x+y+3z=10

and this is the cartesian equation of the plane through A, B and C.

Note

In contrast to the equation of a line, the equation of a plane is more neatly expressed
in cartesian form. The general cartesian equation of a plane is often written as either

ax+by+cz=d or nx+n,y+ nz=d.
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Finding the equation of a plane using the direction
perpendicular to it

(2] Lay a sheet of paper on a flat horizontal table and mark several straight lines on
it. Now take a pencil and stand it upright on the sheet of paper (see figure 10.8).

A

—

< Q

QO

<
Figure 10.8 @

(i) 'What angle does the pencil mak@an}f individual line?

(i) Would it make any differe c&the table were tilted at an angle (apart from
the fact that you coul é{ﬁger balance the pencil)?

The discussion b@hows you that there is a direction (that of the pencil)
which is at rig es to every straight line in the plane. A line in that direction
is sai peridicular to the plane or normal to the plane.

is said to

This allows you to find a different vector form of the equation of a plane which

yu'use when you know the position vector a of one point A in the plane and the
itgction n = n,i+ n,j + n.k perpendicular to the plane.

hat you want to find is an expression for the position vector r of a general
point R in the plane (see figure 10.9). Since AR is a line in the plane, it follows
that AR is at right angles to the direction n.

—
AR.n=0 .
The point A has The point R has
- position vector a. n position vector r.
- .
The vector AR is
r—a.

Figure 10.9
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H . .
The vector AR is given by

For example, the plane through

ﬁ) —r—a A(2, 0, 0) perpendicular to
n = (3i — 4j + k) can be written
and so (r—a).n=0. as(r—2i). Bi—4j+k)=0

which simplifies to 3x —4y +z=6.

This can also be written as

rn—a.n=0

x\) (n
or yl|-|n|—a.n=0
z) \n,

x) [
= y|-|n|=a.n
z) \n,
= nx+mny+nz=d

where d=a.n.

Notice that d is a constant scalar.

Write down the equation of the plane through the point (2, 1, 3) given that
4

the vector | 5 | is perpendicular to the plane.
6

SOLUTION
2
In this case, the position vector a of the point (2, 1, 3) is given by a= [1]
3

The vector perpendicular to the plane is

-

The equation of the plane is

mx+ny+nz=a.n
4x+5y+6z=2X4+1X5+3X6
4x+5y+6z=31

Look carefully at the equation of the plane in Example 10.9. You can see at once

4
that the vector [5], formed from the coefficients of x, y and z, is perpendicular to

the plane. 6

U
W

aue|d e jo uonenba 1039an ay |

251
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m
The vector [nzj is perpendicular to all planes of the form
13

nx+ny+nz=d

whatever the value of d (see figure 10.10). Consequently, all planes of that form
are parallel; the coefficients of x, y and z determine the direction of the plane, the
value of d its location.

nx+ny+nz=d,

nx+tny+tnz=d,

Figure 10.10 ()

The intersection of a lin d a plane
There are thre%l ilities for the intersection of a line and a plane.

1 The li ane are not 2 The line and plane are 3 The line and plane
parallel @gd so they intersect parallel and so do not are parallel and the
infpne point intersect line lies in the plane

. -

Figure 10.11

The point of intersection of a line and a plane is found by following the
procedure in the next example.
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EXAMPLE 10.11
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U
W

2 1
Find the point of intersection of the line r = [3} + /1[ 2] with the plane

S5x+y—z=1. 4 1

SOLUTION

The line is

RNRE

and so for any point on the line
x=2+4 y=3424 and z=4-41
Substituting these into the equation of the plane 5x+ y— z=1 gives

524+A)+(B+24)-4-1) =1
84 =-8
A=-1.

aue|d e pue aul| e J0 UOI}IBSIdIUI BY |

Substituting A = —1 in the equation of the line gives

B

so the point of intersection is (1, 1, 5).
As a check, substitute (1, 1, 5) into the equation of the plane:

5x+y—z=5+1-5
=1 asrequired.

When a line is parallel to a plane, its direction vector is perpendicular to the
plane’s normal vector.

2 3
Show that theliner=| 1 [+¢| 1 |is parallel to the plane 2x+ 4y + 5z=8.
0 -2
SOLUTION
3 2
The direction of the lineis| 1 | and of the normal to the planeis| 4 |.
-2 5

If these two vectors are perpendicular, then the line and plane are parallel.

To prove that two vectors are perpendicular, you need to show that their scalar
product is 0.

2
1[./]4]|=3%X2+1%x4+(-2)%x5=0
-2)\5
So the line and plane are parallel as required. 253
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To prove that a line lies in a plane, you need to show the line and the plane are
parallel and that any point on the line also lies in the plane.

2 3

EXAMPLE 10.12  Doestheliner=|1|+¢| 1|liein the plane 2x+4y+5z=8?

0 -2
SOLUTION

You have already seen that this line and plane are parallel in Example 10.11.

2 3
Find a point on the liner=| 1 |+¢| 1 |by setting t=1.
0 -2

So the point (5, 2, —2) lies on the line.
Now check that this point satisfies the equation of the ple@+ 4y+5z=38.

2X5+4X2+5(=2)=8v O

The line and the plane are parallel and the point (Q—Z) lies both on the line
and in the plane. Therefore the line must li@l‘@ plane.

Note &
2 3

The previous two examples sho you that the liner=|1|+¢t| 1|liesin the plane

0 -2
2x+ 4y +5z=8. This line is ﬁ) to all the planes in the form 2x+ 4y + 5z= d but
in the case when d=8 it Ii@the plane; for other values of dthe line and the

plane never meet.

The distance of a p om a plane

The shoiest distance of a point, A, from a plane is the distance AP, where P is the
peint where the line through A perpendicular to the plane intersects the plane
gure 10.12). This is usually just called the distance of the point from the
ane. The process of finding this distance is shown in the next example.

A

Figure 10.12
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EXAMPLE 10.13 A s the point (7, 5, 3) and the plane 77 has the equation 3x+ 2y + z= 6. Find

U
W

(i) the equation of the line through A perpendicular to the plane
(ii) the point of intersection, P, of this line with the plane
(iii) the distance AP.

SOLUTION
3

(i) The direction perpendicular to the plane 3x+2y+z=61s [2] so the line
1

through (7, 5, 3) perpendicular to the plane is given by

4

(ii) For any point on the line

sue|d e wouy Julod e jo asuelsip syl

x=7+34  y=5+21 and z=3+A4

Substituting these expressions into the equation of the plane 3x+2y+2z=6
gives

3(7+30)+2(5+20) +(3+A) =6
144 =-28
A==2.

So the point P has co-ordinates (1, 1, 1).

H
(iii) The vector AP is given by

e

and so the length AP is \/ (—6)> + (—4)* + (=2)* = J56.

Note

In practice, you would not usually follow the procedure in Example 10.13 because
there is a well-known formula for the distance of a point from a plane. You are

invited to derive this in the following activity.

ACTIVITY 10.3  Generalise the work in Example 10.13 to show that the distance of the point
(a, B, y) from the plane n,x+ n,y + n,z= d s given by

|ma +n,p+ny - d|

[142 2 2
1’L1+1’12+1’l3

255
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The angle between a line and a plane

You can find the angle between a line and a plane by first finding the angle
between the normal to the plane and the direction of the line. A normal to a
plane is a line perpendicular to it.

Angle B is the angle
between the line and
the plane.

Figure 10.13 @

The angle between the normal, n, and the plane is °.O

Angle A is the angle between the line / and the normal to the plane, so the angle
between the line and the plane, angle B, is E@A

N\
EXAMPLE 10.14  Find the angle between the lineg, = +¢| 2 |and the plane 2x+3y+z=4.
-3 5
SOLUTION @0
2 -1
The normal, n, to ti&ane is| 3 |. The direction, d, of the lineis| 2 |.

1 5
The ang@&e normal to the plane and the direction of the line is given by:
COBA =
N
CosA=—2 —
J14x /30

= A =63.95°
= B =26.05°

So the angle between the line and the plane is 26° to the nearest degree.
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Determine whether the following planes and lines are parallel.
If they are parallel, show whether the line lies in the plane.

3 1

M r=|1|+t/-1 and 3x+y—2z=8
2 2
2 1

(i) r=| 1 |+¢t|—4 and x—2y—3z=2
-5 3
2 -3

(iii) r=|0 |+t 2 and 2x—3y+z=5
7 -5
-2 3

ivir=| 1|+¢]-4 and 4x+3y+z=-1
4 0
2 -5

(v) r=|1]|+¢t| 4 and x+2y—6z=0
0 7
2 -1

i) r=|3|+1¢| 2 and 3x+4y—z=7
5 5

The points L, M and N have co-ordinates (0, -1, 2), (2, 1, 0) and (5, 1, 1).

— —

(i) Write down the vectors LM and LN.

(ii) Show that LM.| —4 |=LN.| —4 |=0.
-3 -3

(i) Find the equation of the plane LMN.

(i) Show that the points A(1, 1, 1), B(3, 0, 0) and C(2, 0, 2) all lie in the plane
2x+3y+z=6.
(i) Show that AB (3] =AC {SJ =0
1 1
(i) The point D has co-ordinates (7, 6, 2). D lies on a line perpendicular to the
plane through one of the points A, B or C.
Through which of these points does the line pass?

2 1 4 1
The lines [, r = [1] + /1[1} and m, r= [OJ +u(0], lie in the same plane 7.
0 1 2 1

(i) Find the co-ordinates of any two points on each of the lines.
(i) Show that all the four points you found in part (i) lie on the plane x — z=2.

(iii) Explain why you now have more than sufficient evidence to show that the
plane 7 has equation x — z=2.

(iv) Find the co-ordinates of the point where the lines / and m intersect.

U
W

301 @s1949x3
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5 Find the points of intersection of the following planes and lines.

1
W

Vectors

1 1
i) x+2y+3z=11 and rz[zJ_'_;L[lJ
4 1

-2 3
(i) 2x+3y—4z=1 and r= (—3] +/1[4}

—4 5
8 1
(i) 3x—2y—z=14 and r=|4|+1|2
2 1
1
(ivl x+y+2z=0 and r=4]1
2
RS
(v) 5x—4y—7z=49 and r=|-1|+4 5
W Sy 1430

In each of the following examples you are given a:ﬁoint A and a plane 7. Find

.
(a) the equation of the line through A p@ndicular tom
(b) the point of intersection, P, (@ ine with 7

(c) the distance AP.
T iél&-'- 2z=0

M Ais(2,2,3)
(i) Ais(2,3,0); 1 +5y+3z=0
(iii) Ais (3,1,3); Qt% x=0
iv) Ais (2, x mTis3x—4y+z=2
(v) Ais@@s; Tisx+y+z=6
The poj andl V have co-ordinates (4, 0, 7) and (6, 4, 13).
The & is perpendicular to a plane and the point U lies in the plane.
JFind the equation of the plane in cartesian form.
i)’ The point W has co-ordinates (-1, 10, 2).
Show that WV? =WU? + UV?2,

(iii) What information does this give you about the position of W?
Confirm this information by a different method.

(i) Find the equation of the line through (13, 5, 0) parallel to the line

(4

(ii) Where does this line meet the plane 3x+ y—2z=2?

(iii) How far is the point of intersection from (13, 5, 0)?
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9

10

11

12

13

(i) Find the angle between the line r =i+ 2j + #(3i + 2j — k) and the plane
2x—=3y—z=1. P3

-1 1
(ii) Find the angle between the liner = [ OJ + t[ 3} and the plane m
2 -2

4x—3z=-2.
(iii) Find the angle between the line r =i+ 2j + #(3i + 2j — k) and the plane
7x—=2y+z=1.

301 @s1949x3

A is the point (1,2, 0), Bis (0,4, 1) and Cis (9, -2, 1).

(i) Show that A, B and C lie in the plane 2x+ 3y — 4z=38.
— =
(ii) Write down the vectors AB and AC and verify that they are at right

2
anglesto| 3|
—4

(i) Find the angle BAC.
(iv) Find the area of triangle ABC (using area = %bc sin A).

P is the point (2, -1, 3), Q is (5, =5, 3) and Ris (7, 2, —3). Find

(i) the lengths of PQ and QR

(ii) the angle PQR

(iii) the area of triangle PQR

(iv) the point S such that PQRS is a parallelogram.

P is the point (2, 2, 4), Q is (0, 6, 8), X is (=2, -2, -3) and Y is (2, 6, 9).

(i) Write in vector form the equations of the lines PQ and XY.

(i) Verify that the equation of the plane PQX is 2x+ 5y — 4z=-2.
(iii) Does the point Y lie in the plane PQX?

(iv) Does any point on PQ lie on XY? (That is, do the lines intersect?)

You are given the four points O(0, 0, 0), A(5, —12, 16), B(8, 3, 19) and
C(=23,-80, 12).

(i) Show that the three points A, B and C all lie in the plane with equation
2x—y+3z=70.
(ii) Write down a vector which is normal to this plane.

(i) The line from the origin O perpendicular to this plane meets the plane
at D. Find the co-ordinates of D.

(iv) Write down the equations of the two lines OA and AB in vector form.

(v) Hence find the angle OAB, correct to the nearest degree.
[MEI]

259
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14 A pyramid in the shape of a tetrahedron has base ABC and vertex P as shown
in the diagram. The vertices A, B, C, P have position vectors

a=—4j+ 2k, P
b =2i+ 4k,
c=-5i—-2j+6k,
p=3i-8j+12k
respectively.
p y 2

The equation of the plane of the base is

2 IL,
r.| =3 |=20. A B
4

(i) Write down a vector which is normal to the base .

The line through P, perpendicular to the base, cu ase at L.

(ii) Find the equation of the line PL in vector Q} and use it to find the
co-ordinates of L.

. . . @ N - 12
(iii) Find the co-ordinates of the po&t LP, such that LN = 4LP.

(iv) Find the angle between PA a
[MEI]

15 The position vectors of t ’egoints A, B, C on a plane ski-slope are
a=4i+2j-k, —~71+26j+ 11k, c=16i+17j+ 2k,

where the units metres.

—
(i) Showt @\"ecg 2i — 3j + 7k is perpendicular to AB and also
per ar to AC.

e ind the equation of the plane of the ski-slope.

The thack for an overhead railway lies along DEF, where D and E have
ition vectors d = 130i — 40j + 20k and e = 90i — 20j + 15k, and F is a point
on the ski-slope.

(ii) Find the equation of the straight line DE.
(i) Find the position vector of the point F.
(iv) Find the length of the track DF.
[MEI]

16 A tunnel is to be excavated through a hill. In order to define position,
co-ordinates (x, y, z) are taken relative to an origin O such that x is the
distance east from O, y is the distance north and z is the vertical distance
upwards, with one unit equal to 100 m.

1
The tunnel starts at point A(2, 3, 5) and runs in the direction [ 1 J
-05
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17

18

19

It meets the hillside again at B. At B the side of the hill forms a plane with
equation x+ 5y +2z=77. P3

(i) Write down the equation of the line AB in the form r = u +At. m
(ii) Find the co-ordinates of B.
(iii) Find the angle which AB makes with the upward vertical.

301 @s1949x3

4 7
(iv) An old tunnel through the hill has equation r = [ 1] + ,u[lSJ.
2 0

Show that the point P on AB where x= 7% is directly above a point Q in

the old tunnel. Find the vertical separation PQ of the tunnels at this point.
[MEI]

ABCD is a parallelogram. The co-ordinates of A, B and D are (-1, 1, 2),
(1,2,0) and (1, 0, 2) respectively.

(i) Find the co-ordinates of C.

(ii) Use a scalar product to find the size of angle BAD.

(iii) Show that the vector i+ 2j + 2k is perpendicular to the plane ABCD.
(iv) The diagonals AC and BD intersect at the point E.

Find a vector equation of the straight line | through E perpendicular to
the plane ABCD.

(v) A point F lies on /and is 3 units from A.

Find the co-ordinates of the two possible positions of F.
[MEI]

The line / has equation r = 4i + 2j — k + #(2i — j — 2k). It is given that /lies in
the plane with equation 2x + by+ cz= 1, where b and c are constants.

(i) Find the values of band c.

(ii) The point P has position vector 2j + 4k. Show that the perpendicular
distance from P to is \5.

[Cambridge International AS & A Level Mathematics 9709, Paper 3 Q9 June 2009]
With respect to the origin O, the points A and B have position vectors given by
H . . H . .
OA=2i+2j+k and OB=i+4j+3k
The line [ has vector equation r = 4i — 2j + 2k + s(i + 2j + k).

(i) Prove that the line / does not intersect the line through A and B.

(ii) Find the equation of the plane containing [ and the point A, giving your
answer in the form ax+ by + cz=d.

[Cambridge International AS & A Level Mathematics 9709, Paper 3 Q10 June 2005]

261
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20 The points A and B have position vectors, relative to the origin O, given by

21

(-1 (3
OA=| 3 and OB=|-1].
5 -4

The line I passes through A and is parallel to OB. The point N is the foot of
the perpendicular from B to /.

(i) State a vector equation for the line L
(ii) Find the position vector of N and show that BN = 3.

(i) Find the equation of the plane containing A, B and N, giving your answer
in the form ax+ by + cz=d.

[Cambridge International AS & A Level Mathematics 9709, Paper 3 Q10 June 2006]
The straight line [ has equation r =i + 6j — 3k + s(i — 2i ). The plane p
has equation (r — 3i). (2i — 3j + 6k) = 0. The line /i ects the plane p at the
point A. 6
(i) Find the position vector of A. Q
(i) Find the acute angle between /and i
(i) Find a vector equation for the ]%w ch lies in p, passes through A and

is perpendicular to L Q
[Cambridge Internatiol&AS & A Level Mathematics 9709, Paper 3 Q10 November 2007]

O

The intersection of two p@l@

If you look aroun@ you will find objects which can be used to represent
planes — walls,, ceilings, doors, roofs, and so on. You will see that the
we/p

intersecti@‘

lanes is a straight line.

EXAMPLE 10.15  Fin l,‘ the line of intersection of the two planes

3x4+2y—3z=-18 and x-2y+z=12.

]

Figure 10.14

SOLUTION 1

This solution depends on finding two points on I

You can find one point by arbitrarily choosing to put y =0 into the equations of

the planes and solving simultaneously:

WWw. yout ube. com negal ect ur e Page2710f353

3x—3z=-18
x+z=12

x—z=-6
x+z=12

}<:>x=3,z=9.



what sapp: +92 323 509 4443, enmil: negal ecture@mail . con

So P with co-ordinates (3,0,9) is a point on L

P3

(You could run into difficulties putting y=0 as it is possible that the line has no
points where y=0. In this case your simultaneous equations for x and z would m
be inconsistent; you would then choose a value for x or z instead.)

In the same way, arbitrarily choosing to put z=1 into the equations gives

4x=—-4

3x+2y=—15] o x=—1,y=—6
2y=x—11

x—=2y=11

so Q with co-ordinates (—1,-6, 1) is a point on

S8

2
Use [3] as the direction vector for I
-1 2
The vector equation for lisr=| -6 |+¢| 3 |.

Removing factor —2
makes the arithmetic simpler.

sauejd om} o uoiysasiajul sy

4
1

SOLUTION 2

In this solution the original two equations in x, y and z are solved, expressing
each of x, yand z in terms of some parameter.

3x+2y—3z=-18

and solve simultaneously for y and z:
x—2y+z=12

Put x=411into

12)/—32:—18—3/1

]:>—22=—6—4i:>z=2/1+3
2y+z=12-1

so that 2y =3z— 18—3/1:>2y=3(2/l+3)—18—3/1=>2y=3/l—9:>y=%/1=

Thus the equations for / are

x=2 X 0 1
3 9 9 3
y=3A=5 or | y|=|=5|tA ;).
z=21+3 4 3 0

Note

This set of equations is different from but equivalent to the equations in Solution 1.
The equivalence is most easily seen by substituting 2u — 1 for 4, obtaining
x=2u-1
y=3(2u-1-3=3u-6
z=2(2u—-1)+3=4u+1
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The angle between two planes
The angle between two planes can be found by using the scalar product. As

figures 10.15 and 10.16 make clear, the angle between planes 7, and 7, is the
same as the angle between their normals, n, and n,,.

‘Edge on’ view

Figure 10.15 ‘Figure 10.16

EXAMPLE 10.16  Find the acute angle between the pla®2x+ 3y+5z=8and m,: 5x+y—4z=12.

SOLUTION &

2 5
The planes have normals andn, = ( 1], son;.n,=10+3-20=-7.
5 —4

The angle betweer%normals is 0, where

2

-7
COS —_
1 2| V38 X\/42

= =100.1° (to 1 decimal place)

fore the acute angle between the planes is 79.9°.

Sheaf of planes

When several planes share a common line the
arrangement is known as a sheaf of planes
(figure 10.17). The next example shows how
you can find the equation of a plane which
contains the line / common to two given
planes, 7, and 7, without having to find the
equation of [itself, or any points on /.
Figure 10.17
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Find the equation of the plane which passes through the point (1,2, 3) and
contains the common line of the planes 77,: 2x+2y+z+3=0 and
7, 2x+3y+2z+13=0.
SOLUTION

The equation

pRx+2y+2z+3)+q2x+3y+2z+13)=0 ©)

can be rearranged in the form n,x+n,y +n,z=d, where not all of a, b, ¢, d are
zero provided p and g are not both zero. Therefore equation @ represents a
plane. Further, any point (x, y, z) which satisfies both 77, and 77, will also satisfy
equation @. Thus equation @ represents a plane containing the common line of
planes 7z, and 7r,. Substituting (1,2, 3) into @ gives

12p+24g=0 <& p=-2q.
The required equation is

—2q(2x+2y+z+3) +q(2x+3y+2z+13)=0
& —q2x+y+z-7)=0

so that the required plane has equation 2x+ y+z=7.

Planes o7, and 77, have equations a,x+ b y+c,z—d,=0and
a,x+b,y+c,z—d,=0 respectively. Plane 7, has equation

pla,x+by+c z—d,)+qla,x+b,y+c,z—d,)=0.

How is 7T, related to 77, and 7, if 77, and 7, are parallel?

1 Find the vector equation of the line of intersection of each of these pairs of planes.

(i) x+y—6z=4, 5x—2y—3z=13
(ii) 5x—y+z=3§, x+3y+z=—4
(iii) 3x+ 2y — 6z=4, x+5y—7z=2

(iv) 5x+2y—3z=-2, 3x—3y—z=2
2 Find the acute angle between each pair of planes in question 1.

3 Find the vector equation of the line which passes through the given point and
which is parallel to the line of intersection of the two planes.
M (-2,3,5), 4x—y+3z=5, 3x—y+2z=7
(i) (4,-3,2), 2x+3y+2z=06, 4x—3y+z=11

U
W

401 os1949x3
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Find the equation of the plane which goes through (3,2,-2) and which
contains the common line of x+7y—2z=3 and 2x—3y+2z=1.

Find the equation of the plane which contains the point (1,—2, 3) and which is
perpendicular to the common line of 5x—3y—4z=2 and 2x+ y+ 5z=7.

Find the equation of the line which goes through (4,—-2,—7) and which is
parallel to both 2x—5y—2z=8 and x+ 3y—3z=12.

The diagram shows the co-ordinates of the corners of parts of the roof of a
warehouse.

(12,20, 8)

(-2,20,8)

(10,0,9)

Find the equations of both r(&f:&ns, and the vector equation of the
line PQ. Assuming that th@ is vertical, what angle does PQ make with
the horizontal?

Test drilling in the am1b1an desert has shown the existence of gold deposits
at (400, 0,—4007, , 500,—250), (—200,—100,—200), where the units are in
metres, the pomts east, the y axis points north, and the z axis points up.

Assum dep051ts are part of the same seam, contained in plane 7.
(i) he equation of plane 5.

JFind the angle at which 7 is tilted to the horizontal.

he drilling positions (400, 0, 3), (=50, 500, 7), (—200,—-100, 5) are on the desert
floor. Take the desert floor as a plane, 1.

(iii) Find the equation of I1.
(iv) Find the equation of the line where the plane containing the gold seam
intersects the desert floor.

(v) How far south of the origin does the line found in part (iv) pass?
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9 The diagram shows an arrow embedded in a target. The line of the arrow
passes through the point A(2, 3, 5) and has direction vector 3i + j — 2k. The P3

arrow intersects the target at the point B. The plane of the target has equation m
x4+ 2y—3z=4. The units are metres.

>
401 os1949x3

e

(i) Write down the vector equation of the line of the arrow in the form
r=p+A4.q.
(i) Find the value of A which corresponds to B. Hence write down the

co-ordinates of B.

(i) The point C is where the line of the arrow meets the ground, which is the
plane z=0. Find the co-ordinates of C.

(iv) The tip, T, of the arrow is one-third of the way from B to C. Find the
co-ordinates of T and the length of BT.

(v) Write down a normal vector to the plane of the target. Find the acute
angle between the arrow and this normal.

[MEI]
10 A plane 7 has equation ax + by + z=d.
(i) Write down, in terms of a and b, a vector which is perpendicular to 7.

Points A(2,-1, 2), B(4, -4, 2), C(5, -6, 3) lie on 7.

(i) Write down the vectors X—B>and 7&8

(i) Use scalar products to obtain two equations for a and b.

(iv) Find the equation of the plane 7.

(v) Find the angle which the plane 7 makes with the plane x = 0.

(vi) Point D is the mid-point of AC. Point E is on the line between D and B

such that DE : EB = 1 : 2. Find the co-ordinates of E.
[MEI]
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11 The diagram, which is not to scale, illustrates part of the roof of a building.

Lines OA and OD are horizontal and at right angles. Lines BC and BE are
also horizontal and at right angles. Line BC is parallel to OA and BE is
parallel to OD.

Axes are taken with O as origin, the x axis alon e y axis along OD and
the z axis vertically upwards. The units are me@

Point A has the co-ordinates (50, 0, 0) olnt D has the co-ordinates
(0, 20, 0).
The equation of line OB is y 2 . The equation of plane CBEF is z= 3.

(i) Find the co-ordinate

(ii) Verify that the qubn of plane AOBC is 2y —3z=0.

(i) Find the e n of plane DOBE.

(iv) erte %wmal vectors for planes AOBC and DOBE. Find the angle

e normal vectors. Hence write down the internal angle

e two roof surfaces AOBC and DOBE.
[MEL adapted]

}36 plane p has equation 3x+ 2y + 4z= 13. A second plane q is perpendicular
p and has equation ax+ y + z= 4, where a is a constant.

Find the value of a.

(i)
(ii) The line with equation r =j — k +A(i + 2j + 2k) meets the plane p at the
point A and the plane g at the point B. Find the length of AB.
[Cambridge International AS & A Level Mathematics 9709, Paper 32 Q9 June 2010]
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13 The diagram shows a set of rectangular axes Ox, Oy and Oz, and three points

(2 (1 (1 P3
A, B and C with position vectors OA=|0|,OB=|2 |[and OC=| 1 |. m
0 0 2

ZA

401 os1949x3

(i) Find the equation of the plane ABC, giving your answer in the form
ax+ by +cz=d.

(ii) Calculate the acute angle between the planes ABC and OAB.
[Cambridge International AS & A Level Mathematics 9709, Paper 3 Q9 June 2007]

14 Two planes have equations 2x— y—3z=7 and x+ 2y +2z=0.

(i) Find the acute angle between the planes.
(ii) Find a vector equation for their line of intersection.
[Cambridge International AS & A Level Mathematics 9709, Paper 3 Q7 November 2008]

15 The plane p has equation 2x— 3y + 6z= 16. The plane g is parallel to p and
contains the point with position vector i + 4j + 2k.

(i) Find the equation of ¢, giving your answer in the form ax+ by + cz=d.
(ii) Calculate the perpendicular distance between p and g.

(iii) The line /is parallel to the plane p and also parallel to the plane with
equation x— 2y + 2z=>5. Given that [ passes through the origin, find a
vector equation for /.

[Cambridge International AS & A Level Mathematics 9709, Paper 32 Q10 November 2009]

'KEY POINTS -~
1 The position vector OP of a point P is the vector joining the origin to P.
2 The vector JE} is b — a, where a and b are the position vectors of A and B.
3 The vector r often denotes the position vector of a general point.
4 The vector equation of the line through A with direction vector u is given by

r=a+Au
269
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5 The vector equation of the line through points A and B is given by

— >
r = 0A +1AB
=a+A(b—a)
=(1-A)a+Ab.

!
6 The vector equation of the line through (a,, a,, a,) in the direction [uz is

u
4y L}
r=|a, [+ u |
a; Y

3
7 The angle between two vectors, a and b, is given by 6 in

cosf = Gl

-~ [a[b]

where a.b=a b, + a,b, (intwo dimensions)
=a,b, + a,b, + a;b, (in three dim¢nsipns).

n
1
8 The cartesian equation of a plane perpeildicular to the vector n = [nzl is

s

nx+ny+nz=d.
€ 9 The vector equation of the plane thitough the points A, B and C is
— =
r=O0A + AAB + yAC!

10 The equation of¢he plarie through the point with position vector a, and
perpendicular gg,n s given by (r—a).n =0.

11 The distane ¢ the point (a, 8, y) from the plane n x+ n,y + n,z= dis
‘na CAB+nyy - d‘

§ 2 2 2
\/n] +n2+n3

11 the plane is written ax + by + cz= d, the formula for the distance is
|act + bB +cy - d|
Jar+ b2+
12 The angle between a line and a plane is found by first considering the
angle between the line and a normal to the plane.

13 To find the equation of /, the line of intersection of the planes
ax+by+tcz=d and ax+b,y+cz=d,

e find a point P on / by choosing a value for one of x, y, or z, substituting
this into both equations, and then solving simultaneously to find the
other two variables;

e then write down the vector equation of L

14 The angle between two planes is the same as the angle between their normals.
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... that wonder of analysis, that portent of the ideal world, that
amphibian between being and not-being, which we call the imaginary

root of negative unity.
Leibniz, 1702

The growth of the number system

The number system we use today has taken thousands of years to develop. In

wialsAs Jaquinu ay3} Jo Yypmoahb ayj

primitive societies all that are needed are the counting numbers, 1,2, 3, ... (or
even just the first few of these).

The concept of a fraction was first recorded in a systematic way in an Egyptian
papyrus of about 1650 BC. By 500 BC the Greeks had developed ways of
calculating with whole numbers and their ratios (which accounts for calling
fractions rational numbers). The followers of Pythagoras believed that everything
in geometry and in applications of mathematics could be explained in terms of
rational numbers.

It came as a great shock, therefore, when one of them proved that \/E was not

a rational number. However, Greek thinkers gradually came to terms with the
existence of such irrational numbers, and by 370 Bc Eudoxus had devised a very
careful theory of proportion which included both rational and irrational numbers.

It took about another thousand years for the next major development, when
the Hindu mathematician Brahmagupta (in about AD 630) described negative
numbers and gave the rules for dealing with negative signs. Surprisingly, the first
use of a symbol for zero came even later, in AD 876. This was the final element
needed to complete the set of real numbers, consisting of positive and negative
rational and irrational numbers and zero.

Figure 11.1 (overleaf) shows the relationships between the different types
of numbers.

271
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ACTIVITY 111

ACTIVITY 11.2
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Real numbers

Irrational numbers

Rational numbers

Positive integers Negative integers

Figure 11.1

Copy figure 11.1 and write the following numbers in fli€\otrect positions.

35 1 14142 -2

3 n 113

Draw also a real number line and mark the game«iumbers on it.

The number system expanded in this wely because people wanted to increase the
range of problems they could tackley Thiis can be illustrated in terms of the sorts
of equation that can be solved a¥each stage, although of course the standard
algebraic way of writing thes(1s relatively modern.

For each of these eqéations;"make up a simple problem that would lead to the
equation and say wilat Sert of number is needed to solve the equation.

M x+7=10 (ii) 7x=10
(iii) x> =18 (ivi x+10=7
(v) x247%=0 (vi) x2+10=0

Y@uwill have hit a snag with equation (vi). Since the square of every real number
19, positive or zero, there is no real number with a square of —10. This is a simple
example of a quadratic equation with no real roots. The existence of such
equations was recognised and accepted for hundreds of years, just as the Greeks
had accepted that x+ 10 = 7 had no solution.

Then two 16th century Italians, Tartaglia and Cardano, found methods of solving
cubic and quartic (fourth degree) equations which forced mathematicians to take
seriously the square roots of negative numbers. This required a further extension

of the number system, to produce what are called complex numbers.

Complex numbers were regarded with great suspicion for many years. Descartes
called them ‘imaginary’, Newton called them ‘impossible’, and Leibniz’s
mystification has already been quoted. But complex numbers turned out to be
very useful, and had become accepted as an essential tool by the time Gauss first
gave them a firm logical basis in 1831.
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Working with complex numbers

EXAMPLE 11.1

| ACTIVITY 11.3

Faced with the problem of wanting the square root of a negative number, we
make the following Bold Hypothesis.

The real number system can be extended by including a new number,
denoted by i, which combines with itself and the real numbers according to
the usual laws of algebra, but which has the additional property that i?=-1.

The original notation for i was 1, the Greek letter iota. The letter j is also
commonly used instead of i.

The first thing to note is that we do not need further symbols for other square
roots. For example, since —196 = 196 X (—1) = 14? X i%, we see that —196 has two
square roots, £14i. The following example uses this idea to solve a quadratic
equation with no real roots.

Solve the equation z2 — 6z+ 58 = 0, and check the roots.

(We use the letter z for the variable here because we want to keep x and y to stand
for real numbers.)

SOLUTION

Using the quadratic formula:

=6i\/62—4><58

z 2
_6£-1%
- 2
6£14i
-2
=3+7
To check:

z2=34+71=2>—6z+58=(3+71)>—6(3+7i) + 58
=9 +421+49i*— 18 — 421+ 58
=9+421—49—18 —42i+ 58 .
=0

Notice that here 0
means 0 + 0i.
Check the other root, z=3 —7i.

A number z of the form x + iy, where x and y are real, is called a complex number.
x is called the real part of the complex number, denoted by Re(z), and y is called
the imaginary part, denoted by Im(z). So if, for example, z=3 — 7i then Re(z) = 3
and Im(z) =—7. Notice in particular that the imaginary part is real!

U
W
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In Example 11.1 you did some simple calculations with complex numbers.
The general methods for addition, subtraction and multiplication are similarly
straightforward.

Addition: add the real parts and add the imaginary parts.
(x+iy)+ (u+iv) = (x+u) +i(y+v)

Subtraction: subtract the real parts and subtract the imaginary parts.
(x+iy) —(u+iv) =(x—u) +i(y—v)

Multiplication: multiply out the brackets in the usual way and simplify,
remembering that i> = —1.

(x+1ip)(u+iv) = xu+ixv +iyu+i2yv
= (xu—yv) +i(xv+ yu) @

Division of complex numbers is dealt with later in &Sther.

9 What are the values of i3, i%, i°? @ ¢
Explain how you would work out th@g of i" for any positive integer value of 7.
Complex coniugate@
The complex nusz— iy is called the complex conjugate, or just the

conjugate, of x i arly x + iy is the complex conjugate of x — iy. x + iy

and x—iya jugate pair.The complex conjugate of zis denoted by z*.
If a poly equation, such as a quadratic, has real coefficients, then any
comple ts will be conjugate pairs. This is the case in Example 11.1. If,

ho ver, the coefficients are not all real, this is no longer the case.

u can solve quadratic equations with complex coefficients in the same way
as an ordinary quadratic, either by completing the square or by using the
quadratic formula. This is shown in the next example.
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EXAMPLE 11.2 Solve z2 — 4iz— 13 =0.

U
W

SOLUTION

Substitute a= 1, b=—4i and ¢=—13 into the quadratic formula.

m
Ed
, = —bEVb —dac 3
2a @
_ 4t (4P — 4 X1 x(<13) =
2
_4itV-16+52
2
_4i++/36
2
_4it6
2
=2i*3
So the roots are 3 + 2i and -3 + 2i.
ACTIVITY 11.4 (i) Letz=3+5iandw=1-2i.
Find the following.
(a) z+2z¥ (b) w+ w* (c) zz* (d) ww*
What do you notice about your answers?
(i) Letz=x+1iy.
Show that z+ z* and zz* are real for any values of xand y.
EXERCISE 11A 1 Express the following in the form x + iy.
(i) (8+61)+(6+4i) i) (9-3i)+ (-4 +5i)
(i) (2+7i) — (5+3i) iv) (5—-1)—(6-2i)
(v)  3(4+6i)+9(1-2i) (vi) 3i(7 — 4i)
(vii) (94 21)(1+ 31) (viii) (4—1)(3+21)
(ix) (7 +3i)? x) (8+61)(8—061)
(xi) (1+21)(3—4i)(5+6i) (xii) (3 +2i)°
2 Solve each of the following equations, and check the roots in each case.
i) z2+2z+2=0 i) z2—-2z+5=0
(i) z2 —4z+13=0 ivi z>+6z+34=0
(v) 422 —4z+17=0 i) z>+4z+6=0
3 Solve each of the following equations.
i) z2—4iz—4=0 (i) z>-2iz+15=0
(i) z2 —2iz—2=0 (ivi z2+6iz—13=0
(v) z2+8iz—17=0 (i) z>+iz+6=0 275
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4 Given that z=2 + 3i and w= 6 — 4i, find the following.

(i) Re(z) (i) Im(w)

(iii) z* (iv) w*

(v) z¥+w* (vi) zZf—w*
(vii) Im(z + z*) (viii) Re(w— w*)
(ix) zz* — ww* x) (2)*

(xi) (z¥)3 (xii) zw* —Z*w

5 Letz=x+1y.
Show that (z)* =z

6 Letz =x +iy and z,=x, +iy,.
Show that (z, + z,)* =z, + z,*.

Division of complex numbers @

Before tackling the slightly complicated problem o@h}@‘ng by a complex

number, you need to know what is meant by equa f complex numbers.

Two complex numbers z=x+iyand w= t@ ate equal if both x=wuand y=.
If u# xor v# y, or both, then zand w a,{no equal.

You may feel that this is making a fi out something which is obvious.
However, think about the similaiquestion of the equality of rational numbers.

The rational numbers % aid%e equalif x=wuand y=v.

N
N\
%onal numbers ﬁ and :—f to be equal if u# xand v # y?

imaginary parts must be equal. When we use this result we say that we are
ing real and imaginary parts.

quating real and imaginary parts is a very useful method which often yields
‘two for the price of one’ when working with complex numbers. The following
example illustrates this.

EXAMPLE 11.3 Find real numbers p and g such that p+ gi= 3 i 5
SOLUTION
You need to find real numbers p and q such that
(p+ig)(3+5i)=1.
Expanding gives
3p—5q+i(5p+3g9)=1.
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Equating real and imaginary parts gives

Real: 3p—5gq=1
Imaginary: 5p+3q=0
These simultaneous equations give p = %, q= —% and so
L _3_ 5y
3+51 34 34

1 _ x—iy
x+iy X2+ y*

By writing = p+1ig, show that

x+iy
This result shows that there is an easier way to find the reciprocal of a complex
number. First, notice that

(x+1iy)(x—iy) = x> = i%y?
=x2+y?

which is real.

So to find the reciprocal of a complex number you multiply numerator and
denominator by the complex conjugate of the denominator.

5 —2i is the conjugate of
the denominator, 5 + 21i.

Find the real and imaginary parts of 510

SOLUTION

Multiply numerator and denominator by 5 — 2i.

1 5—2i
5+2i (5+2i)(5-2i)
5-2i
T 2544
_5-2i

29

.5 . . . 2
so the real part is 55 and the imaginary part is — 5.

Note

You may have noticed that this process is very similar to the process of rationalising

a denominator. To make the denominator of 1\/— rational you have to multiply the
numerator and denominator by 3 — V2.

Similarly, division of complex numbers is carried out by multiplying both
numerator and denominator by the conjugate of the denominator, as in the
next example.

U
W
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9—41
2+ 31

m SOLUTION

9—4i_9—4iX2—3i

P 3 EXAMPLE 11.5 Express as a complex number in the form x + iy.

§ 2431 243 2-3i
£ _ 18 —27i — 8i + 12
3 =
x 22 +3?
TEz _6-35i
] 13
o
= 6 _35
1313
The square root of a complex number &
The next example shows you how to find the square r@ a complex number.
EXAMPLE 11.6 Find the two square roots of 8 + 6i. Q
<G’
SOLUTION &
Let (x+1iy)?> =8+ 6i mf
J
=  x*+2ixy—y?=8+6i
Equating the real and im prarts gives:
Real: X— y*=38 @
Imaginar, :%' 2xy=6 @
Rearrangin @
3
=2 ®
V=%
ituting ®@ into @ gives
2-2=3
X
x*—9 = 8x?
Thisis a
(x2=9)(x*+1)=0
= x?=—1 which has no real roots
Remember that x
or x?=9 = x=13. and y are both real
numbers.
When x=3,y=1
When x=-3, y=-1
So the square roots of 8 + 6iare 3 +iand -3 —1i.
278
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9 What are the values of %, lz and ,—13?
i i

EXERCISE 11B

Explain how you would work out the value of lﬂ for any positive integer value of .
i

The collapse of a Bold Hypothesis

You have just avoided a mathematical inconvenience (that —1 has no real square
root) by introducing a new mathematical object, i, which has the property that
you want: i2 = —1.

What happens if you try the same approach to get rid of the equally inconvenient
ban on dividing by zero? The problem here is that there is no real number

equal to 1 + 0. So try making the Bold Hypothesis that you can introduce a new
mathematical object which equals 1 + 0 but otherwise behaves like a real number.
Denote this new object by oo.

Then1+0=o0,andso 1 =0 X oo.

But then you soon meet a contradiction:

2X0=3x%x0
= (2% 0)Xeo=(3X0)Xoo
= 2X (0Xo00)=3x(0Xo0)
= 2X1=3x%x1
= 2=3 which is impossible.

So this Bold Hypothesis quickly leads to trouble. How can you be sure that the
same will never happen with complex numbers? For the moment you will just
have to take on trust that there is an answer, and that all is well.

1 Express these complex numbers in the form x + iy.

0] 5%7 (i) g%i (iii) 6?2i
(vii) g; ;i (viii) i; ; (ix) 26_+5ii
o =

2 Find real numbers a and b with a > 0 such that

(i) (a+ib)>=21+20i (i) (a+ib)>=-40—42i
(i) (a+1b)>=-5-12i (iv) (a+1b)>=-9 + 40i
(v) (a+ib)?=1-1.875i (i) (a+ib)*=1.

U
W

dLL os1249xg
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3 Find real numbers a and b such that

10

a b

3+i 142 LT

Solve these equations.

(i) (1+i)z=3+1

(ii) (3—4i)(z—1)=10-5i

(i) (2+1)(z—7+3i)=15-10i
(iv) (3+5i)(z+2—-51)=6+3i

Find all the complex numbers z for which z% = 2z*.

For z=x+1y, find % + zl* in terms of x and y.

Show that @
(i) Re(Z) = % QO

*
i) Im(z) =2 ;iz . .

(i) Expand and simplify (a +ib)°.
(i) Deduce that if (a+ib)? is real then either b= 0 or b =342
(iii) Hence find all the complex numbers z for which z3 = 1.

(i) Expand and simpli Q) a)(z—-p).

Deduce that the ratic equation with roots & and f3 is

72— %Mf)z +af =0,
that is;
&%um of roots)z + product of roots = 0.
(i) in

g the result from part (i), find quadratic equations in the form

+ az’ + bz+ c¢= 0 with the following roots.

(@) 7+4i,7 -4
51 5
(b) 3°73

(€) —2+~/8i,—2 —/8i

(d) 2+1,3+2i
Find the two square roots of each of these.

i -9

(ii) 3+4i
(iii) —16 + 301
(iv) =7 — 24i
(v) 21-20i
(vi) =5 —12i
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Representing complex numbers geometrically

ACTIVITY 11.6

Since each complex number x + iy I
m A

can be defined by the ordered pair

of real numbers (x, y), it is natural 4

(9]

+ 3

to represent x + iy by the point with

N

cartesian co-ordinates (x, ).

For example, in figure 11.2, U] b o 2 | 4 | ¢ Re

2+3i isrepresented by (2,3) I
—5—4i is represented by (-5, —4) -5 |4
2i is represented by (0, 2)

7 is represented by (7, 0). Figure 11.2

All real numbers are represented by points on the x axis, which is therefore
called the real axis. Pure imaginary numbers (of the form 0 + iy) give points on
the y axis, which is called the imaginary axis. It is useful to label these Re and
Im respectively. This geometrical illustration of complex numbers is called the
complex plane or the Argand diagram after Jean-Robert Argand (1768—1822), a
self-taught Swiss book-keeper who published an account of it in 1806.

(i) Copy figure 11.2.
For each of the four given points z mark also the point —z.
Describe the geometrical transformation which maps the point representing
z to the point representing —z.

(ii) For each of the points z mark the point z*, the complex conjugate of z.
Describe the geometrical transformation which maps the point representing
z to the point representing z*.

You will have seen in this activity that the points representing z and —z have half-
turn symmetry about the origin, and that the points representing z and z* are
reflections of each other in the real axis.

How would you describe points that are reflections of each other in the
imaginary axis?

Representing the sum and difference of complex numbers

Several mathematicians before Argand had used the complex plane representation.
In particular, a Norwegian surveyor, Caspar Wessel (1745—1818), wrote a paper in
1797 (largely ignored until it was republished in French a century later) in which

the complex number x + iy is represented by the position vector (;) , as shown in

figure 11.3 (overleaf).

U
W
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Im A

z=x+1y

Figure 11.3

The advantage of this is that the addition of complex numbers can then be shown
by the addition of the corresponding vectors.

GGG O

In an Argand diagram the position vectors () ntany
representing z, and z, form two sides of a . Z, _
parallelogram, the diagonal of which is the @ o Re
vector z, + z, (see figure 11.4). & Figure 11.4
Im A
You can also represent zby a o r directed line
segment with componen , not anchored at the z,+z, z,
origin as a posmo or Then addition can be
shown as a tria ectors (see figure 11.5). Z _
& O Re
Figure 11.5
ImA w=z -z,
‘draw the other diagonal of the parallelogram, J
let it represent the complex number w 2, y
see figure 11.6), then
Ztw=z =>w=2z -2, 7 >
O Re
Figure 11.6
This gives a useful illustration of subtraction: the Im A
complex number z, — z, is represented by the -
vector from the point representing z, to the point ; 772,
representing z,, as shown in figure 11.7. Notice the :
order of the points: the vector z, — z, starts at the ; eTA
point z, and goes to the point z,. 0 Re
Figure 11.7
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(i) Draw a diagram to illustrate z, — z,.

U
W

(ii) Draw a diagram to illustrate that z, — z, = z; + (-z,).

Show that z, + (~z,) gives the same vector, z, — z, as before, but represented
by a line segment in a different place.

m
x
e
The modulus of a complex number §
Figure 11.8 shows the point representing z= x + iy on an Argand diagram. o
ImA
X x+ iy
'y
ol «x Re
Figure 11.8
Using Pythagoras’ theorem, you can see that the distance of this point from the
origin is 4/ x* + y2. This distance is called the modulus of z, and is denoted by |z|.
So for the complex number z= x + iy, |z]| = y/ x* + y*.
If zis real, z= xsay, then | z| =V x2, which is the absolute value of x, i.e. | x|. So
the use of the modulus sign with complex numbers fits with its previous meaning
for real numbers.
1 Represent each of the following complex numbers on a single Argand
diagram, and find the modulus of each complex number.
(i 3+2i (i) 4 (iii) =5 +1
(iv) =2 (v) —6-5i (vi) 4—3i
2 Given that z=2 — 4i, represent the following by points on a single Argand
diagram.
i) z (i) -z (iii) z*
(iv) —z* (v) iz (vi) —iz
(vii) iz* (viii) (iz)*
3 Given that z= 10+ 5i and w= 1 + 2i, represent the following complex
numbers on an Argand diagram.
(i) z i) w (iii) z+w
(iv) z—w v) w—z
283
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4 Given that z=3 + 4i and w= 5 — 124, find the following.
i) |z] (i) [w] (i) | zw |
i || w |7
What do you notice?
5 Letz=1+1.

(i) Find z"and |z"|for n=-1,0,1, 2, 3,4, 5.
(i) Plot each of the points z" from part (i) on a single Argand diagram.
Join each point to its predecessor and to the origin.

\)

QO

€ In the last section, you saw that |z |is tl(iigﬁce of the point representing z

from the origin in the Argand diagr%
What do you think that | z, — z&e'p ents?
7

\J

If z =x, +iy, and z\:x@z, then z, — z, = x, — x, +i(y, — ).

50|22—21|=\/ "@2"'(}’2_}’1)2'

(iii) What do you notice?

6 Give a geometrical proof that (—z)* =—(z%).

Sets of points in an Argand diagram

Figure 11.9 Argand diagram with the points representing the complex
number, | tiy, and z, = x, + iy, marked.
Im A
.
X Xy iy
Y2=0
X +iy
o
O l;e

Figure 11.9
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Using Pythagoras’ theorem, you can see that the distance between z, and z, is

given by \/ (x, = x)* + (y, — >
So | z, — z, | is the distance between the points z, and z,.

This is the key to solving many questions about sets of points in an Argand
diagram, as in the following examples.

Draw an Argand diagram showing the set of points z for which | z — 3 — 4i|=5.

SOLUTION

| z— 3 — 4i|can be written as | z — (3 + 4i) |, and this is the distance from the point
3 + 4i to the point z.

This equals 5 if the point z lies on the circle with centre 3 + 4i and radius 5 (see

figure 11.10).
Im A

X 3+4i

Figure 11.10

How would you show the sets of points for which
(i) |z—3—4i|<5
(i) |z—3—4i|<5
(iii) |z —3 —4i| = 5?

Draw an Argand diagram showing the set of points z for which
|z—3—4i| <|z+1—2il.

SOLUTION

The condition can be written as | z— (3+4i) | < |z— (-1 +2i)|.

U
W
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|z— (3 4 4i) | is the distance of point z from the point 3 + 4i, point A in figure
11.11, and | z— (=1 + 2i) | is the distance of point z from the point —1 + 2i, point
B in figure 11.11.

Im A

BX"
142

Figure 11.11

These distances are equal if zis on the perp@cular bisector of AB.

So the given condition holds if zis on this bisector or in the half plane on the side
of it containing A, shown shaded in«figyre 11.11.

A\

4

How would you sho, the@! of points for which

0 |z-3—4i|= 21

i) |z—3—4i 41 -2

(i) |z:(@> Z+1-2if?
Q

.
each of parts (i) to (viii), draw an Argand diagram showing the set of points
z for which the given condition is true.

M |z|=2 (i) |z—4|<3
(iii) |z—5i|=6 (iv) |z+3-4i|<5
W |6—i—z|=2 (i) |z+2+4i]=0
(vii) 2<|z—-1+i|<3 (viii) Re(z) =-2

2 Draw an Argand diagram showing the set of points z for which |z — 12 + 5i| < 7.
Use the diagram to prove that, for these z, 6 < | z| < 20.

3 (i) Onan Argand diagram, show the region R for which |z — 5 + 4i| < 3.
(i) Find the greatest and least values of |z + 3 —2i| in the region R.

4 By using an Argand diagram see if it is possible to find values of z for which
|z—2+1|=10 and |z + 4+ 2i| =< 2 simultaneously.
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5 For each of parts (i) to (iv), draw an Argand diagram showing the set of points z
for which the given condition is true.

i) |z|=|z—-4]
(i) |z+1—1i|=]z—1+1]

(i) |z|=|z—2i|

(iv) |[z+5+ 71| <|z—2—61]

The modulus-argument form of complex numbers

The position of the point zin an Argand diagram can be described by means of

the length of the line connecting this point to the origin, and the angle which this

line makes with the positive real axis (see figure 11.12).

Im A

Figure 11.12

‘When describing complex
numbers, it is usual to give
the angle € in radians.

The distance ris of course | z| , the modulus of z as defined on page 283.

The angle 0 is slightly more complicated: it is measured anticlockwise from the

positive real axis, normally in radians. However, it is not uniquely defined since

adding any multiple of 27 to 6 gives the same direction. To avoid confusion, it is
usual to choose that value of 0 for which —1t < 8 < 7. This is called the principal
argument of z, denoted by arg z. Then every complex number except zero has a

unique principal argument. The argument of zero is undefined.

For example, with reference to figure 11.13,

arg(—4) =7
Iy =_=T

arg(—21i) >

arg(1.5)=0

arg(—3 +3i) = %

Remember that
7 radians = 180°.

Im

>

\
-3 +3i -
Veln
Ne | | | \/I | L 5
-4 2 O:/15 Re
“2i

Figure 11.13

U
W
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€ Without using your calculator, state the values of the following.

(i) argi (i) arg(—4 —4i) (iii) arg(2 — 2i)

You can see from figure 11.14 that
x=rcost y=rsinf
r=qx*+y* tan9=£
and the same relations hold in the other quadrants too.

Im A

Figure 11.14 K
Since x= rcos6 and y = rsinf, Qite the complex number z= x+1iyin the

form g)
=r(cos0 +®

This is called the mows—argument or polar form.

ACTIVITY 11.8 (i) Setyour c@tor to degrees and use it to find the following.

(a) t (b) tan™'2 (c) tan™' 100

(d) fab '(=2) (e) tan~!(=50) (f tan~'(-200)
hat are the largest and smallest possible values, in degrees, of tan™! x?

Now set your calculator to radians.

Find tan™! x for some different values of x.
What are the largest and smallest possible values, in radians, of tan™! x?

If you know the modulus and argument of a complex number, it is easy to use
the relations x = rcos6 and y = rsinf to find the real and imaginary parts of the
complex number.

Similarly, if you know the real and imaginary parts, you can find the modulus
and argument of the complex number using the relations =/ x* + y* and
tanf = %, but you do have to be quite careful in finding the argument. It is

tempting to say that = tan™! (3_):) , but, as you saw in the last activity, this gives

T . . . ..
a value between —g and bX which is correct only if z is in the first or fourth

quadrants.
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For example, suppose that the point z, = 2 — 3i has argument 6, and the point

what sapp:

z,=—2+ 3i has argument 0,. It is true to say that tan6f, =tan6, = - % In the case of

z,, which is in the fourth quadrant, 6, is correctly given by tan™ (—%) =~—0.98 rad

(= —56°). However, in the case of z,, which is in the second quadrant, 6, is given

by (—%) + 7 = 2.16 rad (= 124°). These two points are illustrated in figure 11.15.

Im A

Figure 11.15

Figure 11.16 shows the values of the argument in each quadrant. It is wise always
to draw a sketch diagram when finding the argument of a complex number.

+

4
K
2 \

arg + arg +
T is positive\
arg — /Xirg -

7

arg z = tan™! (%) +r T arg z = tan”! (%)

»
'

argz =tan”! (%) - ‘ arg z = tan™! (%)

K
2

Figure 11.16

ACTIVITY 11.9 Mark the points 1 +1, 1
Find argz for each of these, and check that your answers are consistent with

figure 11.16.

—1i,—-141,—1 —1ion an Argand diagram.

Note

The modulus—argument form of a complex number is also called the polar form, as
the modulus of a complex number is its distance from the origin, sometimes called

the pole.

P3
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ACTIVITY 11.11

ACTIVITY 11.10 Most calculators can convert from (x, y) to (1, 0) (called rectangular to polar, and

often shown as R — P) and from (r, 8) to (x, y) (polar to rectangular, P — R).
Find out how to use these facilities on your calculator, and compare with other
available types of calculator.

Does your calculator always give the correct 8, or do you sometimes have to add
or subtract T (or 180°)?

A complex number in polar form must be given in the form z= r(cosf + isin6),
not, for example, in the form z= r(cos@ — isin). The value of r must also be
positive. So, for example, the complex number —2(cosa + isina) is not in polar
form. However, by using some of the relationships

cos (T —a) =—cosa sin (T —a) =sina
cos(a — ) = —cosa sin(a—T) = a
cos(—a) = cosa sin (—a) =: in

you can rewrite the complex number, for example()

—2(cosa +isina) = 2(—cosa —isinQ)
*
=2(cos(a ~m) + G - m)).

This is now written correctly in pol@u. The modulus is 2 and the argument

isa—Tt.
~\

Py

NS
How would you rewﬁt llowing in polar form?

(i) =2(cosa — isin%'
A

When yoyude the polar form of a complex number, remember to give the

argumént 1 radians, and to use a simple rational multiple of T where possible.

and complete this table.

(ii) 2(cosa —isina)

1ve your answers in terms of V2 or /3 where appropriate, rather than as
decimals. You may find figure 11.17 helpful.

n
6

&3
w(a
S
)

tan

sin
1 1 1

cos Figure 11.17
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EXAMPLE 11.9 Write the following complex numbers in polar form.

P3

i) 4+3i i) —1+i (i) =1 —+/3i n

SOLUTION
m
Ed
i) x=4,y=3 3
2.
Modulus=+v3?+4% =5 g
m
Since 4 + 3i lies in the first quadrant, the argument = tan™! %.
4 +3i=5(cosa +isina), where a = tan™! % ~ 0.644 radians
(i) x=—1,y=1
Modulus = V12 +12 = /2
Since —1 + i lies in the second quadrant,
argument=tan~!(-1) + T
T 3n
= —— 4+ = =
4 T 4
—-1+i= \/E cos3—n+ isin?ﬂ
4 4
(iii) x=-1, y= —\/5
Modulus=+vV1+3 =2
Since —1 — \/gi lies in the third quadrant,
argument =tan '3 -1
b 21
=== =—
3 3
-1- \/gi = 2(cos (_2_75) + isin(—z—n))
3 3
EXERCISE 11E 1 Write down the values of the modulus and the principal argument of each of
these complex numbers.
0 8(cos % +isin %) (i) 0823 Z isin2.3
T .. T . ..
(i) 4(cos 3~ isin 5) (iv) =3(cos(—3) +1isin(-3))
291

Www. yout ube. cont negal ect ur e Page3000f353



1
W

Complex numbers

what sapp: +92 323 509 4443, enmil: negal ecture@mail . con

2 For each complex number, find the modulus and principal argument, and
hence write the complex number in polar form.
Give the argument in radians, either as a simple rational multiple of T or
correct to 3 decimal places.

(i 1 (i) -2 (iii) 31

(iv) —4i (v 1+i (vi) =5—51
wii) 1 — v/3i (i) 63/3 + 6 (ix) 3— 4i
(x) —12+51 (xi) 4+71 (xii)—58 — 93i

3 Write each complex number with the given modulus and argument in the
form x + iy, giving surds in your answer where appropriate.

(M |z|=2,argz=% (ii) |z|=3®=§
(iii)|z|=7,argz=%ﬁ (iv) z|—;,argzz—§

(v) |z|=5,argz=—2?n @i;lzlz@argz:—z

in terms of a.

(i) —5-2i & 2i (iii) =5+ 2i

(iv) 2 +5i —2+51

4 Given that arg(5 + 2i) =, find theé&cipal argument of each of the following

5 The variable com&number z1is given by
z=1+c isin 20,
where 0 N alues in the interval —%n <6< %’HZ.

(i ow that the modulus of zis 2 cos 6 and the argument of zis 6.
() Prove that the real part of % is constant.

[Cambridge International AS & A Level Mathematics 9709, Paper 32 Q8 June 2010]
6 The variable complex number zis given by
z=2cosO +i(1-2sinh),
where 6 takes all values in the interval - < 6 < 7.

(i) Show that | z—1i|=2, for all values of . Hence sketch, in an Argand
diagram, the locus of the point representing z.
(i) Prove that the real part of ﬁ is constant for - < 0 < .
[Cambridge International AS & A Level Mathematics 9709, Paper 3 Q5 June 2008]
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4-3i
1-2i
(a) Express zin the form x + iy, where x and y are real.

7 (i) The complex number zis given by z =

U
W

(b) Find the modulus and argument of z.
(i) Find the two square roots of the complex number 5 — 12i, giving your
answers in the form x + iy, where x and y are real.

[Cambridge International AS & A Level Mathematics 9709, Paper 3 Q8 November 2007]

8 The complex number 2 + i is denoted by u. Its complex conjugate is denoted
by u*.

(i) Show, on a sketch of an Argand diagram with origin O, the points A, B
and C representing the complex numbers u, ¥ and u + u* respectively.
Describe in geometrical terms the relationship between the four points O,
A,BandC.

w0y Jejod ayy Buisn sjuiod jo syag

(i) Express u% in the form x + iy, where x and y are real.

(i) By considering the argument of ul*’ or otherwise, prove that

tan’l(%) =2 tan’l(%).

[Cambridge International AS & A Level Mathematics 9709, Paper 3 Q7 June 2006]

Sets of points using the polar form

@ You already know that arg z gives the angle between the line connecting the point
z with the origin and the real axis.

What do you think arg(z, — z,) represents?

If z =x,+iy, and z, = x, +iy,, then z, — z, = x, — x, +i(y, — ).

aX2Th Im A
X=X

arg(z,—z,) =tan

Figure 11.18 shows an Argand diagram with
the points representing the complex numbers

z,=x, +iy, and z, = x, + iy, marked.

1

The angle between the line joining z, and z, X=Xy
and a line parallel to the real axis is given by

h=h 5 e

tan™! .
XX

Figure 11.18
So arg(z, — z,) is the angle between the
line joining z, and z, and a line parallel to the real axis. 203
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EXAMPLE 11.10  Draw Argand diagrams showing the sets of points z for which

(i) argz=

1

(i) arg(z—1)= %

(iii) 0 < arg(z—1) < %

SOLUTION
. T Im
argz=~
(i) gz 4
< the line joining the origin to the point z has
direction *
irection ¢/ @
& zlies on the half-line from the origin in O o Re
the % direction, see figure 11.19. Q Figure 11.19

(Note that the origin is not included, since arg0 is undefined.)

(i) arg(z—1)= %

& Im A
< the line joining the poi%& point z has
irection 0 i

< zlies on the half- rom the point i in 0 Re
T 5. .
the n dlre%' see figure 11.20. Figure 11.20
(iii) 0 < ar % % Im A
& «thaline joining the point i to the point z has
. direction between 0 and % (inclusive) i
& zlies in the one-eighth plane shown in 0 Re

figure 11.21.
Figure 11.21

EXERCISE 11F 1 For each of parts (i) to (vi) draw an Argand diagram showing the set of points z
for which the given condition is true.
. _. T . o
(i) argz——g (ii) arg(z—4i)=0
(iii) arg(z+3) = % (iv) arg(z+ 1 +2i) = %ﬂ
(v) arg(z—3+i)s—§ (vi) —§<arg(z+5—3i)<§

2 Find the least and greatest possible values of argzif |z — 8i | < 4.
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You are given the complex number w=—+/3+ 3i.

U
W

(i) Find argwand |w—2i]|.
(ii) On an Argand diagram, shade the region representing complex numbers z
which satisfy both of these inequalities.

. 1 2
— = S =z
|z—=2i|<2 and ST S argz < 3.

Indicate the point on your diagram which corresponds to w.
(iii) Given that z satisfies both the inequalities in part (ii), find the greatest
possible value of | z— w|.

411 os1949x3

[MEL part]

\3

The complex number w is given by w = —% + 17.

(i) Find the modulus and argument of w.

(i) The complex number z has modulus R and argument 6, where
—%TC <6< %n. State the modulus and argument of wz and the modulus
and argument of %

(iii) Hence explain why, in an Argand diagram, the points representing z, wz
and % are the vertices of an equilateral triangle.

(iv) In an Argand diagram, the vertices of an equilateral triangle lie on a circle
with centre at the origin. One of the vertices represents the complex number
4 + 2i. Find the complex numbers represented by the other two vertices.
Give your answers in the form x + iy, where x and y are real and exact.

[Cambridge International AS & A Level Mathematics 9709, Paper 3 Q10 November 2008]

(i) Solve the equation 2 — 2iz— 5 = 0, giving your answers in the form x + iy
where x and y are real.

(i) Find the modulus and argument of each root.

(iii) Sketch an Argand diagram showing the points representing the roots.

[Cambridge International AS & A Level Mathematics 9709, Paper 3 Q3 June 2005]

(i) Solve the equation 22+ (2\3)iz— 4 = 0, giving your answers in the form
x + iy, where xand y are real.

(ii) Sketch an Argand diagram showing the points representing the roots.

(i) Find the modulus and argument of each root.

(iv) Show that the origin and the points representing the roots are the vertices
of an equilateral triangle.

[Cambridge International AS & A Level Mathematics 9709, Paper 3 Q7 June 2009]

7 The complex numbers —2 + i and 3 + i are denoted by u and v respectively.

(i) Find, in the form x + iy, the complex numbers

(a) u+tv,

(b) %, showing all your working.
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(ii) State the argument of %

In an Argand diagram with origin O, the points A, B and C represent the
complex numbers u, vand u + v respectively.
(i) Prove that angle AOB = %n.

(iv) State fully the geometrical relationship between the line segments OA
and BC.
[Cambridge International AS & A Level Mathematics 9709, Paper 32 Q7 November 2009]

2 .
—1 1 is denoted by u.
(i) Find the modulus and argument of v and u?.

(i) Sketch an Argand diagram showing the points represSting the complex

8 The complex number

numbers u and 2. Shade the region whose points sent the
complex numbers z which satisfy both the ineq@l |z|<2and

lz— 12 |<|z—u] Q
[Cambridge International AS & A Level Mathematics 9709, Paper 3 Q8 June 2007]
<
Working with complex numbers in ﬁ'ar form

The polar form quickly leads to’&e':legant geometrical interpretation of the
multiplication of complex n rs. For if

z, = r,(cosO ¢ isi and z, = r,(cos6, + isin6,)
then zz, =77, \ isin®,)(cos6, +isin6,)

=r $6,cos6,—sin6, sin6, +i(sin6, cosf,+ cosH, sinb,)].
Using t ound-angle formulae gives

z
<
1s the complex number with modulus r,r, and argument (6, +6,), so we

ve the beautiful result that

12, =1,1,[cos (0, +0,) +isin(6, +6,)].

|22, 1=12]lz]|
and
arg (z,z,) = arg z, + arg z, (+ 27 if necessary, to give the principal argument).
So to multiply complex numbers in polar form you multiply their moduli and
add their arguments.
ACTIVITY 11.12 Using this interpretation, investigate

(i) multiplication by i

(ii) multiplication by —1I.

WwWw. yout ube. com negal ect ur e Page3050f353



what sapp:

+92 323 509 4443, emnil: negal ecture@nmail . comn

z
The corresponding results for division are easily obtained by letting Z—l =W

Then z, = wz, so that 2

| z,|=|wl||z|and arg z, = arg w + arg z, (+ 27 if necessary).
z z
Therefore | w|= |2 _lal
z,| 1zl

gl
and argw=arg —
)
= arg z, —arg z, (£ 21 if necessary, to give the principal argument).

So to divide complex numbers in polar form you divide their moduli and subtract
their arguments.

This gives the following simple geometrical interpretation of multiplication
and division.

Im A
arg(z,z,) =argz, +argz, 9 =
- o arg(ij =argz, +argz
8 Z argz, 8%,
/ 2
7
Im A ImA
6 6 6
5 5 5
7 2/
4 4 4
3 z 3 r, )1 3 r, |4
r rg 7,
2 2 2
1 " |z, 1 1 g gzzz‘(
argz 21
) > | \ : > EJLZQ >
(6] 1 2 3 4 Re O 1 2 3 4 Re (6] 172 3 4 Re
(i) z and z, (ii) Multiplying z, by z,  (iii) Dividing z, by z,

Figure 11.22

To obtain the vector z,z, enlarge the vector z, by the scale factor | z, | and rotate it
through arg z, anticlockwise about O (see Figure 11.22 (ii)).

. z 1 .
To obtain the vector _* enlarge the vector z, by scale factor B and rotate it
2

2
clockwise through arg z, about O (see Figure 11.22 (iii)).

This combination of an enlargement followed by a rotation is called a spiral
dilatation.

In summary:
lz,z, =127z arg (z,z,) =arg z, +arg z,

! |Z1|

ol arg (ﬂ) =argz —arg z,

5| 2| z,

U
W

w0y Jejod ul ssaquinu xajdwod yim Bupnjiop
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ACTIVITY 11.13 Check this by accurate drawing and measurement for the case z, =2 +1i, z, = 3 + 4i.
Then do the same with z, and z, interchanged.

EXAMPLE 11.11 Find

(i) 6(cosE + isinE) X Z(COSE + isinE)

2 2 4 4
. T .. T . T,.. T
(i) 6(C0$2 + 181112) g Z(COS4 + 181114)

SOLUTION

(i) Remember that
r,(cos6, +isin6),) X r,(cosb, + isin6,) = r,r,(cos(0 & 0,) +isin(0, + 6,))

So to multiply complex numbers you

o multiply the moduli
o add the arguments.

-
T, . T T, ../ 3n
6(cos2 + 151n2) X 2(cos4 + 181{$2(c05

(ii) To divide complex numbers on

N

o divide the moduli C)

o subtract the argun@s.
T aaind) - T 4 isin®| = T4 isinT
6(cos2 +®¥) 3 2(cos4 +151n4) 3(cos4 +1s1n4)

Q? I
This lead al€rnative method of finding "
the sq oot of a complex number.

ing 8 + 6i in polar form gives

r=v82+6>=10
tanf = g = 0 =0.6435 radians ‘ .
O 8 R
S0 8 + 61 = 10(c0s 0.6435 + i 5in 0.6435) ¢

Notice that if you add 27 to the argument you Figure 11.23

will end up with exactly the same complex number
on the Argand diagram (as you have just rotated through one full turn).

So 8 + 61 is also the same as 10[cos(0.6435 + 27) + i sin(0.6435 + 27)].
Let r(cos@ + isin0) be the square root of 8 + 6i so that

r(cosO +isin®) X r(cosf + isinf) = r¥(cos20 + isin20) = 8 + 6i
= r(cos26 + isin20) = 10(co0s0.6435 + isin 0.6435) ®

and r(cos26 + isin20) = 10[c0s(0.6435 + 21) + isin(0.6435 + 21w)] @
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From @ or @ =10 = r= \/E The square root

of the modulus
From @ 20 =0.6435 = 6=0.32175 of 8 + 6i.
From @ 20=0.6435+2n = 6=0.32175+Tm

So one square root of 8 + 6i is Half of the argument
of 8 + 6i.

J10(c0s0.32175 +isin0.32175) = 3 +i

and the other square root is Half of the argument
of 8 + 61, plus .

J10[c0s(0.32175 + 1) +isin(0.32175 + )] = =3 —1

Compare this method with that used on page 278 to find the square roots of 8 + 6i.

What are the square roots of 10[cos(0.6435 + 2nm) + isin(0.6435 + 2nm)], where
nis an integer?

Complex exponents

When multiplying complex numbers in polar form you add the arguments, and
when multiplying powers of the same base you add the exponents. This suggests
that there may be a link between the familiar expression cos6 + isin€ and the
seemingly remote territory of the exponential function. This was first noticed

in 1714 by the young Englishman Roger Cotes two years before his death at the
age of 28 (when Newton remarked ‘If Cotes had lived we might have known
something’), and made widely known through an influential book published by
Euler in 1748.

Let z= cosf + isin. Since i behaves like any other constant in algebraic
manipulation, to differentiate z with respect to 8 you simply differentiate the real
and imaginary parts separately. This gives

d_‘z9 =—sinf +1icosf

=1i2sinf +icosO
=1i(cosf +isinfh)

=iz

So z=cosf + isinf is a solution of the differential equation j—g =iz

If i continues to behave like any other constant when it is used as an index, then
the general solution of 3—; =izis z= el*¢ where cis a constant, just as x = ek*¢ s
the general solution of fli_atc = kx.

U
W

sjuauodxa xajdwo)
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Therefore cosf + isinf = elf*+,
Putting 6 = 0 gives

cosO +isin@ = e0*¢

= 1=e°
= c=0
and it follows that

cosO +isinf = el

The problem with this is that you have no way of knowing how i behaves as an
index. But this does not matter. Since no meaning has yet been given to e* when
zis complex, the following definition can be made, suggested by this work with

differential equations but not dependent on it: @

el = cosf +isiné. O
Note Q

) *
The particular case when 6 =t gives e™ = cos%sin n=-1, so that

e+ 1=0. $
This remarkable statement, Iinkirge ive fundamental numbers 0, 1, i, e and =, the
three fundamental operations@ ition, multiplication and exponentiation, and the
fundamental relation of et@y, as been described as a ‘mathematical poem’.

Find

) (a) 4e¥ %

(ii) erte these results as complex numbers in polar form.

(i) (a) 4e’x 3e? =12¢7

(b) 6egi - 3e2i — 2e7i

(ii) (a) 4(cos5+1isin5) X 3(cos2 +isin2) = 12(cos7 +isin7)

(b) 6(cos9 +1isin9) + 3(cos2 +isin2) = 2(cos7 +isin7)
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Find the following.

U
W

(i) 8(cos0.2+1isin 0.2) X 4(cos 0.4 + isin 0.4)

(ii) 8(cos 0.2 +1isin 0.2) + 4(cos 0.4 + isin 0.4)

(
(
(iii) 6(cos— +1isinz ) X Z(COSE +1sin=

m
x
n, .. T ()
6)
(]
. T, ... T . T,.. T 2
(iv) 6(cos3 +151n3) : 2(cos6 +151n6) o
(v) 12(cosm+isinT) X 2(cos§ + isin%)
(vi) 12(cosm + isinm) + 2(cos% + isin%)
Given that z= 2(cos% + isinZ) and w= 3(cos§ +isinZ; ) find the following in
polar form.
M wz (i) L (ii) £
z w
(iv) % v) w? (i) 2°
(vii) w3z* (viii) 5iz (ix) (1+1)w
Prove that, in general, arg% = —arg z, and deal with the exceptions.
Given the points 1 and z on a Argand diagram, explain how to find the
following points by geometrical construction.
(i) 3z (ii) 2iz (iii) (3 +2i)z
(iv) z* ) |z] (i) 22
Find the real and imaginary parts of S
14431
Express—1 +iand 1 + J3iin polar form.
Hence show that cos N - \/5 — 1, and find an exact expression for sins—n.
12 22 12
301
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6 The complex numbers a and f are given by 0574-4 =2-iandf = —Je+2i.

(i) Show thata =2 + 2i.

(ii) Show that || =|f]. Find arg & and arg 3.

(i) Find the modulus and argument of ¢f. lllustrate the complex numbers «,
f and ¢ff on an Argand diagram.

(iv) Describe the locus of points in the Argand diagram representing complex
numbers z for which | z—a| =| z—f|. Draw this locus on your diagram

(v) Show that z=a + f satisfies | z—a | = | z— B |. Mark the point representing

a + p on your diagram, and find the exact value of arg(a + f3).
[MEI]

iT 2+ 5iw

7 Express e?in the form x + iy where zis the given comple§mber.

(i) —im (i) Z (ifi) 6 (iv) 3 —4i
8 Find the following. ()
(i) (a) 2% x5e72 (b) 8 + 2¢% . (c) 3e”i x 2¢!
(d) 12¢° + 4e*i (e) 3ef xel @ (A 8l + 2et

(i) Write these results as comple@ bers in polar form.

i\

ich have no real roots, i.e. to solve azZ+ bz+ c=0 when

The reason for inventing plex numbers was to provide solutions for
quadratic equation 15\
the discriminanz %ac is negative. This is straightforward since if

b? —4ac=—-k?

gives z= . These are the two complex roots of the equation. Notice that

e kis real) then the formula for solving quadratic equations

when thécoefficients of the quadratic equation are real, these roots are a pair of
te complex numbers.

uld be natural to think that to solve cubic equations would require a further
xtension of the number system to give some sort of ‘super-complex’ numbers,
with ever more extensions to deal with higher degree equations. But luckily
things are much simpler. It turns out that all polynomial equations (even those
with complex coefficients) can be solved by means of complex numbers. This
was realised as early as 1629 by Albert Girard, who stated that an nth degree
polynomial equation has precisely 7 roots, including complex roots and

taking into account repeated roots. (For example, the fifth degree equation
(z—=2)(z—4)%(z* +9) = 0 has five roots: 2, 4 (twice), 3i and —3i.) Many great
mathematicians tried to prove this. The chief difficulty is to show that every
polynomial equation must have at least one root: this is called the Fundamental
Theorem of Algebra and was first proved by Gauss (again!) in 1799.
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The Fundamental Theorem, which is too difficult to prove here, is an example
of an existence theorem: it tells us that a solution exists, but does not say what it
is. To find the solution of a particular equation you may be able to use an exact
method, such as the formula for the roots of a quadratic equation. (There are
much more complicated formulae for solving cubic or quartic equations, but
not in general for equations of degree five or more.) Alternatively, there are
good approximate methods for finding roots to any required accuracy, and your
calculator probably has this facility.

Find out how to use your calculator to solve polynomial equations.

You have already noted that the complex roots of a quadratic equation with real
coefficients occur as a conjugate pair. The same is true of the complex roots of
any polynomial equation with real coefficients. This is very useful in solving
polynomial equations with complex roots, as shown in the following examples.

Given that 1+ 2iis a root of 4z> — 1122 + 26z — 15 =0, find the other roots.

SOLUTION

Since the coefficients are real, the conjugate 1 — 2i is also a root.
Therefore [z— (1 +2i)] and [z— (1 — 2i)] are both factors of 4z°> — 11z% + 26z— 15 =0.
This means that (z— 1 — 2i)(z— 1 + 2i) is a factor of 42> — 1122 + 26z—15=0.

(z—=1=-20)(z—1+2i) =[(z=1)=2i][(z—1) + 2i]
=(z-1)%*+4
=z2-2z+5

By looking at the coefficient of z* and the constant term, you can see that the
remaining factor is 4z — 3.

473 — 1122+ 262z—15= (2> —2z+5)(4z-3)

The third root is therefore %.

Given that —2 + i is a root of the equation z* + az’ + bz> + 10z + 25 =0, find the
values of a and b, and solve the equation.

SOLUTION

z=-2+1

2= (2412 =4—4i+()?=4—-4i—-1=3—-4i
(2+1)22=(-2+1)(3—-4i))=—6+11i+4 =2+ 11i
(

b= (22412 =(2+i)(-2+11)=4-24i— 11 =-7 — 24i

3

Z
V4
z

U
W

suonenba pue si1aqunu xajdwod
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Now substitute these into the equation.

—7—=24i+a(-2+11i) + b(3 —4i) + 10(-2+1) +25=0
(=7 =2a+3b-20+25)+ (—24+11a—4b+10)i=0

Equating real and imaginary parts gives

—2a+3b-2=0
1la—4b—-14=0

Solving these equations simultaneously gives a=2, b=2.
The equation is z* + 2z° + 2z + 10z + 25 =0.

Since —2 +1is one root, —2 — i is another root.

So (z+2—-1)(z+2+1i) =(z+2)*+1
=z2+4z+5
is a factor. QO

Using polynomial division or by inspection
.
Z4 4222+ 2224+ 102+ 25 = (22 +§g{22 —2z+5).

The other two roots are the solutio@

0\

e quadratic equation z2 — 2z+ 5=0.

Using the quadratic formula

S}
H+

4—4X

N\

z

+2i

ts of the equation are —2 +iand 1  2i.

EXERCISE 11H Check that 2 +1iis a root of z> — z2— 72+ 15 =0, and find the other roots.

2 Oneroot of z> — 1522 + 76z — 140 = 0 is an integer.
Solve the equation.

3 Given that 1 —iis aroot of z°> + pz2 + qz+ 12 =0, find the real numbers
p and g, and the other roots.

4 Onerootof z* — 1023 + 4222 — 822+ 65=01s 3 + 2i.
Solve the equation.

5 The equation z* — 82° + 2022 — 72z+ 99 = 0 has a pure imaginary root.
Solve the equation.
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You are given the complex number w=1 —1i.

(i) Express w?, w3 and w* in the form a + bi.

(ii) Given that w*+ 3w? + pw? + qw+ 8 = 0, where p and g are real numbers,
find the values of p and q.
(i) Write down two roots of the equation z* + 323 + pz? + qz+ 8 = 0, where p
and q are the real numbers found in part (ii).
[MEL part]

(i) Given that @ =—1 + 2i, express @? and @ in the form a + bi.
Hence show that & is a root of the cubic equation

22+ 7224+ 152+ 25=0.

(ii) Find the other two roots of this cubic equation.

(iii) Illustrate the three roots of the cubic equation on an Argand diagram, and
find the modulus and argument of each root.

(iv) Lis the locus of points in the Argand diagram representing complex
numbers z for which ’z + % ‘: % Show that all three roots of the cubic
equation lie on L and draw the locus L on your diagram.

[MEI]

The cubic equation z* + 6z + 12z + 16 = 0 has one real root & and two

complex roots 3, y.

(i) Verify that @ = —4, and find 8 and y in the form a + bi.
(Take 8 to be the root with positive imaginary part.)

(ii) Find 1 and 1 in the form a + bi.

(i) Find the mo)élulus and argument of each of @, f and .

1 11
=, =, = onan Argand
a B’y 8

diagram, making clear any geometrical relationships between the points.

(iv) Ilustrate the six complex numbers &, 3, v,

[MEL, part]
You are given that the complex number a = 1 + 4i satisfies the cubic equation

2Z24+5224+ kz+m=0,

where k and m are real constants.

(i) Find a? and &® in the form a + bi.
(ii) Find the value of k and show that m=119.
(i) Find the other two roots of the cubic equation.
Give the arguments of all three roots.
(iv) Verify that there is a constant ¢ such that all three roots of the cubic
equation satisfy
lz+2]|=c
Draw an Argand diagram showing the locus of points representing all
complex numbers z for which | z+2|=c.
Mark the points corresponding to the three roots of the cubic equation.
[MEI]

U
W
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In this question, ¢ is the complex number —1 + 3i.
(i) Find ¢ and &’
It is given that A and p are real numbers such that Aa® + 8a* + 34a + = 0.

(ii) Show thatA =3, and find the value of .

(iii) Solve the equation Az> + 82z% + 34z + =0, where A and p are as in part (ii).
Find the modulus and argument of each root, and illustrate the three
roots on an Argand diagram.

[MEL part]

The cubic equation z° + z2 + 4z — 48 = 0 has one real root & and two complex

roots § and .

(i) Verify that @ =3 and find § and y in the form a + bis
Take f3 to be the root with positive imaginary pard, and give your answers
in an exact form.

(ii) Find the modulus and argument of each ofth® numbers «, 5, , é, giving
the arguments in radians between —T and . 7
[lustrate these four numbers on ari Argand diagram.

(iii) On your Argand diagram, draw the locus of points representing complex
numbers z such that

arg(z—a) = argp. MEL par]
, par

The equation 2x8+ x> ¥25 = 0 has one real root and two complex roots.

(i) Verify that @ 721 is one of the complex roots.

(i) Write dowh the other complex root of the equation.

(i) Slex¢h/an Argand diagram showing the point representing the complex
umber 1 + 2i. Show on the same diagram the set of points representing
the complex numbers z which satisfy

|z]=]z—1-2i].
[Cambridge International AS & A Level Mathematics 9709, Paper 3 Q7 November 2005]

Complex numbers can be written in the form z= x+ iy with i?=—1.
x is called the real part, Re(z), and y is called the imaginary part, Im(z).

The conjugate of zis z* = x—iy.

To add or subtract complex numbers, add or subtract the real and
imaginary parts separately.

(x, +iy) £ (x, +iy,) = (x, £ x) +i(y, £ y,)
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4 To multiply complex numbers, multiply out the brackets and simplify.

(x, +iy)(x, +iy,) = (x,x, — y,p,) +ilxy, + 5,,)

5 To divide complex numbers, multiply top and bottom by the conjugate of
the bottom.

sjuiod Aay|

x iy _ (xx, + y17) +i(x,0—x,)
x, +1y, SRS

6 The complex number z can be represented geometrically as the point
(%, ). This is known as an Argand diagram.

7 The modulus of z=x+iyis|z|=/x*+ y.
This is the distance of the point z from the origin.
8 The distance between the points z, and z, in an Argand diagram is | z, — z,|.

9 The principal argument of z, argz, is the angle 6, -t < 6 < 7, between the
line connecting the origin and the point z and the positive real axis.

10 The modulus—argument or polar form of zis z= r(cos6 + isin6), where
r=|z| and 0 =argz

11 x=rcos6 y=rsin6

r=4x*+y* tan@z%

12 To multiply complex numbers in polar form, multiply the moduli and add
the arguments.

z,z, = 1 1,[cos(0, + 6,) +isin(6, + 60,)]
13 To divide complex numbers in polar form, divide the moduli and subtract
the arguments.
2 = Dlcos(0, —0,) +isin(6, - 6,)]
%1 cos(6, —0,) +isin(6, - 0,
14 e = cosO+isin®, e =cosO—isin6
15 A polynomial equation of degree n has n roots, taking into account

complex roots and repeated roots. In the case of polynomial equations
with real coefficients, complex roots always occur in conjugate pairs.

WWW. yout ube. com negal ect ur e Page3160f353



what sapp: +92 323 509 4443, enmil: negal ecture@mail . con

This page intentionally left blank

WWw. yout ube. com negal ect ur e Page3170f353



what sapp:
Answers

Neither University of Cambridge International Examinations nor OCR bear any responsibility for the example
answers to questions taken from their past question papers which are contained in this publication.

Chapter 1

9 (Page 2)
For the green curve you can try
y=f(x) where f(x) = kx(x—1)(x—2).
This passes through (0, 0), (0, 1) and
(2, 0) but its maximum is not quite
when x= % A value of k of 0.208
gives a maximum value of 0.08. The
blue curve is then y = —f(x). A better
fit can be obtained by taking a two
part function

f(x) =0.32x(1—x)for0 s x<1
and f(x) =0.32(x—1)(x—2)

forl=x=<2.

Exercise 1A (Page 7)
16 3 G 12 Gi) 7
2 2x3-4
3 x*+4x>+6x2+4x+1
4 x3+2x*+5x+7
5 —x>+ 15x+ 18
6 2x*+8

7 xt+4x3+6x2+4x+1

xt—5x2+4

(-]

9 x*—10x*+9

11 2x—-2

12 10x?

13 4

14 2x>-2x
15 —8x>—8x
16 x>—2x-3
17 x*+3x

18 2x%2—-5x+5

+92 323 509 4443,

19 3+ x2+2x+2
20 2x2+3

21 x3+2x2+5

22 3 +2x2+x

23 2x3+3x2+x+4
24 2x*+2x+3

25 x2+3x+1

26 x2+4

27 x2-2x-2

28 x2+2x-2

@® (Page 13)

Its order will be less than n.

Exercise 1B (Page 14)
1 () 0,0,-8,-18,-24,-20,0
(i) (x+3)(x+2)(x—3)
(iii) =3, —2 or 3

(iv)

2 (i) —-15,0,3,0,-3,0,15
(i) x(x+2)(x=2)
(iii) =2, 0 or 2

(iv) y

emai | :

nmegal ecture@mi |l . con

v
N

(2]
=
[
2
3 (i) 30,0, (x—3) g
i) p=2,q=-15 -
(iii) 5,2 0r 3
30
-5 2 3 X
4 (ii) —2,30r4
(i) YAoa
5 (i) 0
(i) -1+ \/5
(ifi) y
2 X
6 (i) —4
(i) (x—1)?
(iii)
J’T |
4°x
4
7 () a=2,b=1,c=2
(ii) 0, \/g or —\/5
309
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Answers

what sapp: +92 323 509 4443, enmil: negal ecture@mail . con
8 (i) (FX-4)(¥*-1) Exercise 1C (Page 21) (i) VA
(i) (x+2)(x—2)(x*+1) 10 x=-9orx=1

(iii) Two real roots: —2 and 2 (i) x=—7orx=1

(iii) x=—-lorx=7 \
i) 16,1342, +

10 (i) £6,%3,%2, 41, (iv) x=—%orx=2 4\/0
ii) —1,2o0r3

(i) (v) x=-3orx=2 (-2,2)
11 (i) (x—1)(x—2) (x+2)

i) (x+1)(x2—x+1)
(i) (x—2)(x%>+2x+5)

9 (ii) 2x%+9x+ 11 remainder 19

=Y

(vi) x=1lorx=7
(vii) x=—2orx=4
(viii) x=—§0r x=2
3
2

(iv) (x+2)(x>—x+3) .
(ix) x=—-lorx=

12 (i) (a) 2 —2x2+2x+2

i) 8<x<
remainder —6 2 M 8§<x<2

(b) % —3x2+6x—6 i) 0= x=4
remainder —2 (i) x << -lorx>11
(c) ¥*—2x+4 (ivy x=-3orx=1
remainder —2x — 4 W 2<x<5
13 —-12
(vi) —f\x 2
14 2or -5
36 [x-1]<2
15 —5;4;4 0 >
(i) |x—5]<3 41 -1 0 x
16 —1;-7;1,~20r3 &
(iii) |x—1|
17 () a=2,b=3
(iv) |x—
(i) 2x+1 '
) <o.1 234
18 a=2,b=-3 |
<3.5 .
19 (i) —13 W (vi) y
(i) (x+2)(2x+1)(x—3) YA
20 (i) a=-4,b=1
5
(i) (x—3)and (x+1) 2/
21 (i) 4 ¢ 2,3)
- _ > O x
(i) ¥®—2x+2 ) ) >
. 1
® (Page 17 (i) yA 5 M x<3
g(3)=3,8(-3)=3 i x<?
|3+3|=6,[3-3]=0, G x = —1
[3]+]3]=6,3]+]-3]=6 \ i) -1 < x < 3
9 = w) x<<-lorx>3
(Page 19) ol 15 ; il £ < —6or x= 4
|x|<2andx=0=0<x<2 3
1
x| <2andx<0=-2<x<0 6 ;<x<1
1
7 x> 3
8 x<2a

WWW. yout ube. com negal ect ur e Page3190f353



what sapp:
Chapter 2

@® (Page 23)

Without using logarithms, you would
probably use trial and improvement
to find x where x> = 500.

Investigation (Page 24)

i 10
G 3

(i) 10%¢/%=1.26

Activity 2.1 (Page 27)

Y
4 — (16, 4)
3 18, 3)
2 (/I’ ) (L, )
R mir.icz))
20 1 19141 X
/l“ ) T T T T v
-1 =0
i) WIS vV
R V2=2te14
=3 8 ‘
[TTT T
(?) (Page 28)

e a’=1,log,1=0

® a"=x>0 (fora>0)so
log, (x) = mis defined only for
x>0

NS PR G R
° Puttmgx—ymlog(y) log y

= log x=—log (%) asx— 0,
—log (%) ——o0

® There is no limit to m in a™
=xand log L X=m; think, for
example, of base 2, i.e. a=2.
Then x=2. When y=1, 2, 3,
4,...thenx=2,4,8,16,....So0
increases in y are accompanied
by ever larger increases in x and
so a decreasing gradient. This is
the case not just for a =2 but for

any value of a greater than 1.

® log a=1

+92 323 509 4443,

emai | :
Exercise 2A (Page 29)
1 () x= log3 9,2
(i) x= log4 64,3
(iii) x=log, %, -2
(iv) x= log5 é, -1
(v) x= log7 1,0
(vi) x=1log,( 2, i
2 (i) 3=9,2
(ii) 57=125,3
(iii) 2V =16, 4
(iv) 6=1,0
v) 64=8,7
(vi) 57 =24, -2

25’

3G 4
4

(ii)

(iii)

(iv)

B o NI

(v)

|
'S

(vi)

(vii)

(viii)

N—= = NW

(ix)

|
w

(x)

4 (i) loglo
(ii) log2
(i) log 36
(iv) log%
(v) log3
(vi) log4
(vii) log 4
(viii) log%
(ix) log%

(x) logl2

nmegal ecture@mi |l . con

5 (i) 2logx
(ii) 3logx
(iii) 5 log x

(iv) & log x

(v) 6logx
vi) 2log x

6 (i) x<7
(i) x=3
(iii) x=3
(iv) x>0.437
v x<I1

(vi) x=0.322

(vii) 0.431 < x<1.29
(viii) 0 =< x<0.827
(ix) 1<x<2.58

(x) 0.68<x<1.49

2
7 log,, x7’ x=21

8 (i) x=19.93
(ii) x=-9.97
(iii) x=9.01
(iv) x=48.32
(v) x=1375

929

10 (i) 25
(i) 17

11 () 4<y<6
(i) 1.26< x< 1.63

_log4—logx

12
4 log3

13 x=0.802

Exercise 2B (Page 35)

Some of the questions in this exercise

involve drawing a line of best fit by
eye. Consequently your answers
may reasonably vary a little from
those given.

v
N

Z 19ydeysn

311
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Answers

INETE)

what sapp:

1 (i) If the relationship is of the
form R= kT", the graph of
log R against log T'will be a

straight line.
(ii) Values of log R: 5.46, 5.58,
5.72, 6.09, 6.55
Values of log T: 0.28, 0.43,
0.65, 1.20, 1.90
Alog R
7
6 =rr =
5
0 1.0 20
log T
(iii) k=1.8 X 10°, n=0.690
(iv) 0.7 days

2 (ii) Plottinglog A against ¢
will test the model: if it is a
straight line the model fits
the data.

(iii) b=1.4, k=0.89

log 4 A

0.8

0.6 o

0.4

0.2 HLA

O
0.2

~Y

(iv) (a) t=2.4 days
(b) A=3.0 cm?

(v) Exponential growt
3 (i) k=3.2x10,

4 (i) k=1100,n=1.6
(iii) s = 2500 m

(iv) The train would not
continue to accelerate like
this throughout its journey.
After 10 minutes it would
probably be travelling at
constant speed, or possibly
even slowing down.

5 (ii) b=1.37,k=1.58

WWw. yout ube. com negal ect ur e Page3210f353

+92 323 509 4443,

emai | :

6 Taking logs of both sides,
log y=1og A+ Blog x.

Plotting log y against log x gives
a straight line of gradient B and
intercept log A.

This gives A=1.5, B=0.78.

The value of y that is wrong is
6.21.If xis 5.07, y should be 5.32
according to the equation.

7 log y=Blog x+log A.
He should plot log y against
log x. If this gives a straight line,
there is a relationship of the
form y= Ax5. If there is no such
relationship, the points will not
be in a straight line.
The value of log A is given by
the intercept on the log y axis.
The value of B is the gradient of
the line.

me.
(i) A=2.0,n=1.5

@ * 2.94 0.51
logy‘

nmegal ecture@mi |l . con

9 (ii)
A

=
o
2

w
X

N}

0 >
0123456728910t

(iii) a=3,b=2

(v) Just over 3 million.

&) log,,z

A
02.89 0.32
(_) 2.91 0.41

10 (ii)

10 : 2.97 0.60
08 | 3.00 0.68
0.6 X 3
0.4 A A&\ﬁ 3.02 0.75
0.2 il
11 5
0o KRN > 3.05 0.77
1
o8t 3.07 0.79
graph, A=1.5, B=0.5.
rmula is therefore log oz A
1.5x%3, 1.0 I
IOgJ’A 0.6 \f/
2.4 0.4
22 x 0.2
2.0 0 >
18 28113107 13{2
16 -0.2 log,,d
1.4
12 (iii) D= 1050
1.0
0.8 (iv) n=3
0.6 (v) d=840 (nearest 10)
0.4
log4
0.2 11 (i) m (ii) 3.42
OQ Y XX 0 5. 9.V % > o8
NANENINECEVAN
ogx @) (Page 40)
1_ 1 s _
(ii) The graph is a straight ¥ =% . This means that n=—1

and so n+ 1=0. You cannot divide
by zero.



what sapp: +92 323 509 4443,

Investigation (Page 40)

(i) 1.099
(i) 0.693
(iii) 1.792

31 21 61
J.IEdX'f‘J‘lde:Jlde
Activity 2.2 (Page 41)

(i)
J

Y

(0)

(ii) x=az=> dx=adz

Converting the limits:
x=a=z=1
x=ab=z=b

J.abldx=Jb L adz

a X IE

i L(a) + [ Ldx=L(ab)
= L(a) + L(b) =L(ab)
Activity 2.3 (Page 41)

@ 1()=[ Lde=0

i L&) -L(b) =[Ldx-['Lax
- j'“ld
px
Let x= bz
[hane L
-1fy
(i) L(a") =j“'}dx

Let x=z"thendx=nz"'dz.
ﬂl _ ﬂl —1
J.lxdx—J.lznxnz" dz

|

—njlzdz

=nL(a)

WWW. yout ube.

Activity 2.4 (Page 42)

e=2.72(2d.p.)

Exercise 2C (Page 47)

— kt
1 x=x,e

2 o=t

3 p=25¢7002

y—5
4 x=ln(y0_5)

5 (i) x=0.0540

(ii) x=0.0339
(i) x = 0.238
(iv) x=0.693
(v) x=1.386
(vi) x=1.099

6 (i) PA

100

emai | :

<Y

(0)

(i) 100
(iii) 1218
(iv) 184 years
7 (i 1m
(ii) 4.61m, 6.09 years
(i) a=e2=0.135, b=2.5
(iv) 11 years

5
8 =
Y e

9 4.11

10 x=0.481

11 A=3.67,b=1.28
12 x=-1.68

13 A=2.01,n=0.25

nmegal ecture@mi |l . con

Chapter 3

1
N

9 (Page 51)

Possible answers are:

Bridge: wavelength 50-100 m;
amplitute 15-30m

Ripple: wavelength 0.02—0.05m;
amplitude 0.005-0.01 m
n T

Bridge: a=15-30; b= -2

€ 191deyn

(about 0.06-0.13)
Ripple: a=0.005-0.01; b= 125-300

Exercise 3A (Page 54)

1 (i x=90°
(i) x=60° 300°
(i) x=14.0°, 194.0°
(iv) x=109.5°,250.5°
(v) x=135°315°
(vi) x=210° 330°

2 (i) -1

-2

(ii) —=
3

(iii) _Ti
(iv) _Tz
(v) 0
(vi) —\/5

3 (i) B=60° C=30°
(i) 3

4 (i) L=45° N=45°
(i) \/E , \/E 51

5 (i) 14.0°

6 () 0=<a=<90°

(ii) No, for each of the second,
third and fourth quadrants a
different function is positive.

(i) No, the graphs of the three
functions do not intersect at
a single point.
7 (i) x=0° 180° 360°

313
(i) x=45°,225°

com nmegal ect ur e Page3220f353
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Answers

what sapp:
(i) x = 60°, 300°

(iv) x=>54.7, 125.3° 234.7°,
305.3°

(v) x=18.4° 71.6° 198.4°,
251.6°

(vi) x=45°,135° 225°, 315°

Activity 3.1 (Page 55)

y=sin(f + 60°) is obtained from
y=sin6 by a translation [_63)
y=cos(6 — 60°) is obtained from

y = sin@ by a translation [6(?]

V)
y=sin(d + 60°)

\
1 -
7’\\ cos(0 — 600%

+92 323 509 4443,

0 180° 360°

It appears that the 0 co-ordinate
of A is midway between the two
maxima (30° 1) and (60°, 1).
Checking:
0 =45° = sin(0 + 60°) = 0.966
cos(6 — 60°) = 0.966.
If 60° is replaced by 35°, using
the trace function on a graphic

calculator would enable the
solutions to be found.

Q (Page 56)

Area of a triangle

e and cosine in
a right-angled triangle.

The definitions o

Activity 3.2 (Page 57)

(i) sin(6+¢)
=sinfcos¢ + cosOsing
= sin[(90°-0) + ¢]
=sin(90° —0)cos¢p
+c0s(90° — 6)sing
= sin[90° — (6 — ¢)]
=cosfcos¢ + sinfsing
= cos(0—¢)
= cosfcos¢ + sinfsing

WWW. yout ube. com negal ect ur e Page3230f353

Y

emai | : negal ecture@nuil . comr
(ii) = cos[0— (—¢)] ) tanf +1
= cos 6 cos(—p) + sin O sin(—¢p) 1-tan@
. tan6 —1
=cos(0 +¢) o (vi) 1+ tan0
=cosfcos¢p —sinfsing
i 3 (i) sinf
G tan(0 + ¢) = S0+ ) '
005(9 + ¢) (ii) cos8¢
_ sin6 cos + cosO sin¢ i) 0
0s6 cos¢ — sinf sin@
(iv) cos20
sinf cos¢p  cosO sing . .
_c0sfoos P cosb cosg 4 @ =15
"~ c0sB cos¢ _ sinfsing (ii) 6=157.5°
cos6cosp  cos6 cos (iii) 0 = 0° or 180°
_ tan0 + tan¢ N o
I— tanBtang (iv) 0 =111.7
_ (v) 0=485°
(iv) tan[9 + (_¢)] = M
1- tan9tan(—¢) 5 (i L
tan(0 —¢) = % 0|Q =2.79 radians
6 (i) !
® (Page 57) J5
.
No. In part (iii) you get @ (i) sinf = %, cosf = %
NEFERS & 7 (i) x=10.9° -169.1°
tan90°= V3
1-V3x % 0 8 (i) x=22.5° 112.5°
9 o =26.6°and § = 45° or
Neither tan 90° nox -~ 1 is defined. a=135°and 3 =116.6°
For the resul valid you must 10 (i) O=24.7°,95.3°
exclude the case when 6 + ¢ =90° ’

(or °) ).
%ly in part (iv) you must
clude 6 — ¢ =90°, 270°, etc.

Exercise 3B (Page 59)

REE
22 2

(i) _ﬁ

(iii)

1 (i)

) Y341

2 (i) ——=(sin 0 + cos 0)
(ii) %(\/g cos 6 + sin 0)
(iiii) %(\/g cos 0 —sin 6)

(iv) %(cos 26 — sin 20)

Q (Page 61)

For sin 20 and cos 20, substituting

6 = 45° is helpful.

You know that sin 45° = cos 45° =L
V2

and that sin90° = 1 and c0s90° = 0.

For tan 26 you cannot use 6 = 45°.

Take 0 = 30° instead; tan 30° = %
3

and tan 60° = /3.

No, checking like this is not the
same as proof.

Exercise 3C (Page 65)

1 (i) 0=14.5°%90° 165.5° 270°

(i) 6=0°,35.3° 144.7°, 180°,
215.3° 324.7°, 360°

(i) 6 = 90°, 210°, 330°
(iv) 6 = 30°, 150°, 210°, 330°
(v) 6=0°138.6° 221.4° 360°



what sapp:

2 (i) 0=-7,0,7

+92 323 509 4443,

(ii) 0=-m,0, 7
co g T2 2T
(iii) 0 = 3 50, 3
g3 —m o 3m
(iv) 0 1114
_-ln 3t -7n -t T
v) 6= D 4’12 a1
T 5n 3n
412 4
3 3sin6 —4sin’0,
—0. R 3m 51 7n
9—0,4,4,7'5) 4) 4’2‘”
4 0=51° 309°
5 cotf
o tan6 (3 — tan6)
1-3tan%60
8 (ii) 0 =63.4°
9 (i)
YA
2,
y=co0s2x
0 x
2
4
(|ii)x=%,%

10 (ii) 0 =27.2° 152.8° 207.2° 332.8°
11 (i) 6 =26.6° 206.6°
12 (i) %(4@—3)
- _ o _ w4
(ii) tan2a = 7,tan3u =17
Exercise 3D (Page 70)
1) V2 cos(d - 45°)
(ii) 29cos(0 —46.4°)
(i) 2 cos(6 — 60°)
(iv) 3 cos(6 — 41.8°)
. T
2 (i) \/Ecos(9+ 4)

(ii) 2cos(0 + %)

emai | :

3 ) V5sin(0+63.4°)
(ii) 3sin(0 +48.2°)

a G 2sin(0-%)
(ii) 3sin(6 — 0.49 rad)

5 (i) 2cos(f —(—60°))
(ii) 4cos(6 — (—45°))
(iii) 2 cos(6 — 30°)
(iv) 13 cos(6 —22.6°)
(v) 2cos(0 —150°)
(vi) 2 cos(6 —135°)

6 (i) 13cos(0+67.4°)
(ii) Max 13, min —13

(iii)

(iv) 6 =4.7°, 220.5°

. . T
7 (i) 2\/§sm(0—6)
2,
3 b
S
3

(i) Max 2+/3,0=
min —2\/5, 0=

(iii)
y

25/\

[0} 27 9
N
Qﬁ.{

T
(iv) 0 =50

8 () V13sin(20 +56.3°)

(ii) Max x/E, 0=16.8%
min —/13, 6 = 106.8°

nmegal ecture@mi |l . con

(iv) 6 =53.8°159.9° 233.8°, 339.9°

(2]
=
[
o
=3
1]
=
w

315

9 (i) \Bcos(O —54.7°)

(i) Max v/3,0 =54.7%
min -3, 6 =234.7°

(i)

=

[

; WWO ‘
5

1
(iv) Max — =, 6 =234.7%
(A"} X3_\/§

. 1
min —=, 0 =54.7°
3+43

10 (i) 6=30.6° 82.0°

11 (i) cosxcosa—sinxsina
i) r=+29, 0 =68.2°

(i) Max /29 when x =291.8°,
min —v29 when x=111.8°
(iv) x=235.7°, 347.9°
12 (i) 30.96°
(ii) x=15.7°282.4°
(iii) x=7.9° 141.2°, 187.9°, 321.2°
13 (i) R=10, a=53.13°
(i)

|
S o
_—

a booo)
<

D

(=)

o

=Y

(iii) x=119.55°, 346.71°
(iv) 6 =103.29° 330.45°
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Answers

what sapp: +92 323 509 4443,

14 (i) c=Va’+b?
(i) tana= %
(iii) o = 36.87°
(iv) 6 =103.29°, 330.45°

15 (i) 5cos(x—53.13°)
(ii) x=27.29°,78.97°
16 (i) J26 cos(0+11.31°)
(i) 6=27.02°310.36°
17 (i) 25cos(6 —73.74°)
(i) 6=20.6°126.9°
18 0 =281.3°,172.4°

Investigation (Page 74)

The total current is
I=A sinwt+ A, sin(wt+a)
(where @ = 2mf).
I=A sinwt+ A,sinwtcosa
+ A, coswtsina
=(A; +A,cosa)sinwt
+ (A,sina)coswt
Let A| + A,cosa=Pand A,sina=Q

so I=Psinwt+ Qcoswt

=VP*+ Q% sin(wt +¢)

where ¢ = tan™! (%)

This is a sine wave with the same
frequency but a greater amplitude(
The phase angle ¢ is between 0 and o

Exercise 3E (Pagexid)

1 (i) sin60
(ii) cos60
(iii) 1
(iv) cosf
(v) sinf

(vi) 2sin26
(vii) cosf
(viii) —1

2 (i) 1-sin2x
(ii) cos2x

(iii) %(5 cos2x—1)

WWW. yout ube.

emai | :
4 (i) 0 =4.4° 95.6°
(i) 0=199.5° 340.5°

_tn

(iii) 0= 6°2

(iv) 0=-15.9°164.1°
g T 51

=266
(i) 6=20.8°122.3°

(v)
(vii) 6 =76.0° 135°

Chapter 4

Activity 4.1 (Page 81)

u
y=> whereu=x!° and v=x

v
gives du_ 1050 and 9V =746

dx dx

Using the quotient rule,

7

_ x7 x10x — x'0 x 7¢5

— 10x° = 7% 5
_73:14 =

u_x/ 45 dy 5
)/z?:y = :>E=3x

x=

Exercise 4A (Page 82)

™~0), x(5x3—3x+6)
(i) x*(21x% + 24x— 35)
(iii) 2x(6x+1)(2x+1)*

2

v -
Y TGy

x%(x% +3)

(v)
YT

i) 2(2x+1)(12x%+3x—8)

wii) 2(1 + 6x — 2x7?)
(2x2 +1)*
e 7 —X
(viii) (x n 3)3
2Vx -1
. 1
2 (i) ————
(x-17
i) -lLy=—x

nmegal ecture@mi |l . con

iii) -l y=—x+4
(iv) The two tangents are
parallel.
(i) 3x(x-2)
(ii) (0, 4), maximum;
(2, 0), minimum
Gid  yy
4

(R 4y+x=12
i) y=x—3

(iv) dy # 0 for any value of x

dx
y

(iii) (4, 8)
(iv) Tangent: y= 8; normal: x=4
w @ Q,8)

(b) R(4,29)

20x+1)(x+2)
(2x + 3)?

(i) (-1,-2);(=2,-3)

(i)

(iii) (-1, —2), minimum;
(-2, —3), maximum
2x(x+1),

(0]} 5
(2x +1)?

(0,0) and (-1,-1)

(ii) (0, 0) minimumy;
(-1, —1) maximum
32

2

(i)

(iii) %; 3; gradient =

com nmegal ect ur e Page3250f353



what sapp:

Q (Page 85)
d

——(f(x)) is a polynomial of order

dx
(n—1) so it has no term in x".

@® (Page 87)

y=In(3x) is a translation of y =In(x)
through (2)

The curves have the same shape.

The gradient function is valid for
x>0.

Exercise 4B (Page 89)

1H 32
. 1
(i) X
i 2
X
i) 2%
x2+1
(v) —%
(vi) 1+Inx
(vii) x(1+2In(4x))
1
viii) x(x + 1)
i) —%
x*-1
- 1- 23ln x
X
2 (i) 3e*
(i) 2e**
(i) 2xe*

(iv)  2(x+1)e*+1)?
(v)  e*(1+4x)
(i) 2x2%e7*(3—x)

1-x
ex

(viii) 6e2*(e?*+1)?

(vii)

3 (i) 0.108e%%!

(ii) 0.108mh;0.266 mh™;
0.653mh™’;1.61mh!

dy

4 (i) e (1+x)e%
2
% =(2+x)e*

+92 323 509 4443,

emai | :

- 1
@ (-1, )
5 (i) Rotation symmetry, centre
(0, 0) of order 2. f(x) is an
odd function since

f (—x) = —f(x).
(i) f'(x)=2+1In(x?);f"(x) = %
Gii) (-2, 2), maximum;

(%, —%), minimum

(i) (1, e), minimum

(i) YA v
el
j !

7 (i) y:lnx:gx—yz%;

=Y

y=xlnx:>d—y=1+lnx

dx
8 (i) (1—x)e™™
G (1,1
9 (i) 1
1-Inx

(i) f'(x)= 2

" 2lnx-3
') =—3—
X
i) 1, _1
e &
10 (4, 4e72)
11 (i) (1,-e)

(ii) Minimum
12 (i) ey—2x+1=0

Activity 4.2 (Page 92)

dy

NN

nmegal ecture@mi |l . con

When y = sin x the graph of %

against x looks like the graph of cos x.
y

b

3
(

a

L o
R
G
(]

a

=Y

1
AVARVAE
-1

<N
a
L o
]
B
<Y

Q (Page 93)

No. You can see this if you draw
both graphs.

Q (Page 93)

This is a demonstration but ‘looking
like’ is not the same as proof.

Activity 4.3 (Page 93)
sinx

=tanx=——
Y Ccos X

dy cosx(cosx) - sinx(—sinx)

dx cos? x
_cos?x+sin?x 1
- cos? x " cos’x
=sec’x

Exercise 4C (Page 96)

1 (i) —2sinx+cosx
(ii) sec’x
(iii) cos x + sinx
2 (i) xsec’x+tanx
(ii) cos?x—sin?x=cos 2x
(i) e*(sin x + cos x)

3 xcosx;smx
x
(ii) e*(cosx + sinx)sec’x

sinx (1 — sinx) — cos x(x + cos x)

(i)
sinx

P2

v 191deyn

317
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Answers

what sapp:
4 (i) 2xsec’(x®+1)

(ii) 2cos2x

1
tan x

5 (i) - sinx

(iii)

27/ cos x
(i) e*(tanx + sec’x)
(i) 8xcos 4x?

(iv) —2 sin 2xe0s2*

1
1+ cosx

1
sin x cos x

(v)
(vi)
6 (i) cosx—xsinx
(ii) —1
(i) y=—x
(iv) y=x—21
7 dy =e*cos3x— 3e*sin3x
dx

d%y
dx?
8 (i) e *(cosx—sinx)

(iiii) (0.79, 0.32), (~2.4,-7.5)

=—6e*sin3x — 8e*cos3x

(iv) Differentiate with respect
to x again and evaluate the
second derivative at the
stationary points.

9 Maximum at x = én,

minimum at x = gn

10 Maximum at x = %n,

11 (i) e

12 -

9 (Page 99)

The mapping is one-to-many.

Exercise 4D (Page 102)
d
10G) 4y3ay

dy
. 2
(ii) 2x+3y 1

WWW. yout ube.

+92 323 509

4443, emil :

i) < dy
(iii) xdx+y+l+dx

(iv) —sin y%
(v) eV +2)%

wi) ¥+ 3xy2%

(vii) 4xy’ + 10x2y4%
1+1dy

y dx
dy

(viii)

(ix) xe’7=+e’+ siny%

dx

(x) %2%+2xlny

(xi) e+ x cos eSi“J’dl
X1 34 dX

(xii) tany+ xseczygx—y

nmegal ecture@mi |l . con

(iv) YA

(0] 1

<Y

8 (i) (1,-3), (-1,3)
9 (ii) 4x—5y=-12
10 (i) (2,1), (-2,-1)

X2 +3y?

(i) 8 —-9=0
12 (6@

(Page 105)

At points where the rate of change of

11 (i)

* . .
dy @ gradient is greatest.
—(tanx == + y sec’x

dx

1
25 0 Exercise 4E (Page 112)
30 & 160 ¢t
a4 () O O - 1+ cosf
n 0
WM y= 1+ sinf
2
5 (1,%11(1 (-1,2) i E+1
t2-1
’ +4
W% (i) —3cotf
x—=2y—11=0 t-1
) DU
i (2,-4) (vi) —tan6
(iv) YA ! (i) -
2e!
1 2
1 i) L0
; > (1-1)?
(0] 6 ¥x
777777777777 AL 20 6
} W y=6x—/3
: Gii) 3x+18y—19V3 =0
‘ -
Asymptotes x=6, y=—4 3 (Z) 0)
7 i Iny=xlnx (i) 2
1dy S 1
L 14y (iii) y=2x-—
(ii) ydx_1+lnx y 2
- 1
i) (0.368, 0.692) W (0,-3)

4 (i) x—ty+at’=0
(ii) tx+y=at’+2at

(iii) (at? + 24, 0), (0, at® + 2at)

com nmegal ect ur e Page3270f353



what sapp:

. b
6 (i) T

(i) at’y+ bx=2abt
(i) X(2at, 0), Y(O, %)
(iv) Area=2ab

7 (i) y=1tx—2¢
Gib) [2(¢, + 1), 21,,)]
(iv) x=4

8 (i t=1
(i) x+ y=3
(v) (-8,-5)

9 (i) t=-2
(i) y=2x—6
(iv) (=5,9)

10 (i) —

(i) 3xcost+4ysint=12
(iii) t=0.6435 + nn

1 2
11 (iii) (1+—,—)
NERNE
12 @ 2=
3t—2
(i) (6,5)
13 2sinf
14 (i) %
16 (i) —tant
Chapter 5

Activity 5.1 (Page 119)

1 The areas of the two shaded
regions are equal since y= % is

an odd function.

® (Page 120)
The polynomial p,(x) can take the

value zero.
K¥=2x+3=(x—1)*+2s0is
defined for all values of x and is
always greater than or equal to 2.

+92 323 509 4443,

emai | :
Exercise 5A (Page 120)
1 (i) 31n|x|+ c
(ii) iln|x|+c
(i) 1n|x—5 |+ c
(iv) 2lnf2x-9]+ ¢
2 (i) je+c
(i) —je+c
(i) -3¢+ ¢
(iv) —e% +c
V) e*—2e+¢
3 (i) 2(e¥—1)=5960
i) In¥=1.69
(iii) 4.70
(iv) 0.906
4 (i) P(2,4);Q(-2,-4)
(i) 8.77;14.2 (to 3 s.f.)
5 (i) 4;5In5-4
(i) Reflectionin y=x
(iv) (@) 3(5In5—4)
(b) 4In3+5In5-4

2
2x+3

6 (i)
(iii) Quotient = 2x+ 1,
remainder = -3
. _ 1.2x x_3
7 ) y=3e +2e7 -3
(ii) Minimum when x=0.231
8 (i) y=3x-3
(ii) (a) 4

9 %(e2 +1)

Investigations (Page 123)

A series for e*
a0=1
a1=1
_1
az—a
_1
a‘,’—a

nmegal ecture@mi |l . con

0=t
e=2.71828183 (8d.p.)
Compound interest
Scheme B: R=2.594
Scheme C: R=2.653

1000 instalments: R=2.717
10* instalments: R=2.718

10° instalments: R agrees with the
value of e to 5 d.p.

Exercise 5B (Page 126)
1 (i) —cosx—2sinx+c¢
(ii) 3sinx—2cosx+c
(iii) —5cosx+4sinx+c
(iv) 4tanx+c
(v) —% cos(2x+1) + ¢
(vi) é sin(5x—1) + ¢
(vii) 3tan2x+ ¢

(viii) tan 3x+ % cos2x+ ¢

(ix) 4tan x—%sin 2x+c¢

2 (i)

(ii)

&D—‘va—ﬂ
L

(iii)

N‘

(iv)

(v)

Sw“— Bl
W
|
—

(vi)

(=)
\S]

(vii)

[a—

(viii)

(ix)

®IWw bW

3 (i)

4 (i) (a) %x+isin2x+c

T
(b) 1
(i) (a) %x—isin2x+c
n 3
(b) = ——
6 8

1
N

G 19ydeyn
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Answers

what sapp:

6 (i) %%‘
(i)
7 (M
(i)
8 (i) 151 —2)

9 (ii) 2v3 —

Activity 5.2 (Page 130)

For example

8.398
50 strips:  8.409
100 strips: 8.416
1000 strips:8.420

32 strips:

9 (Page 130)

The curve is part of the circle centre
(2%, 0), radius 2%.

Area required is half a major
segment = 8.4197 units?.

Error from 16-strip estimate is
about 0.7%.

©® (Page 131)

(i) Underestimates — all trapezia
below the curve

(ii) Impossible to tell

(i) Overestimates — all trape 'a‘
above the curve

Exercise 5 e 131)

1 (i) 458m

(ii) A curve is approximated by
a straight line. The speeds
are not given to a high level
of accuracy.
2 (i) 3.1349..
(i) 3.1399..., 3.1411...
(iii) 3.14
3 7.3

(ii) Overestimate

WWW. yout ube. com negal ect ur e Page3290f353

+92 323 509 4443,

emai | :
4 (i)
x y
2 2
3 2.2361
4 2.4495
5 2.6458
6 2.8284
7 3

(ii) 12.6598; too small
(i) 2% square units
(iv) 12% square units, 0.054%

5 (i)y;

o

(i) 2.179218, 2.445242,
2.136756(2.134035

(i) 2.13 @

6 (i)

)

0

=Y

(ii) 0.458658,0.575532,
0.618518, 0.634173,
0.639825

(iii) 0.64

7 (i) y A
4
2\

!
1

(i) 3,3.1,3.131176, 3.138988

(iiii) 3.14 (This actually converges
to T.)

8

nmegal ecture@mi |l . con

Wi 2,2,4,4

(i)
YA
3+

=Y

10

N
=)

=Y

=Y

(iii) 4

@M (1,0)

(ii) %

(iii) 0.89

(iv) Underestimate
@ (0,1)

i) 7

i) 1.77

(iv) Underestimate



what sapp:
11 (M 2
(iii) 0.95
12 (i) 1.23
(ii) One of the intervals gives an

overestimate and the other
gives an underestimate.

Chapter 6

©® (Page 136)
(i), (ii) and (iv) can be solved

algebraically; (iii) and (v) cannot.

9 (Page 138)
0.012 takes 5 steps
0.385 takes 18 steps
0.989 takes 28 steps

In general 0.abc takes (a+b +c+2)
steps.

Activity 6.1 (Page 139)

For 1 d.p., an interval length of

< 0.05 is usually necessary,
requiring n=5. However, it depends
on the position of the end points of
the interval.

For example, the interval

[0.25, 0.3125] obtained in 4 steps
gives 0.3 (1 d.p.) but the interval
[0.3125, 0.375] obtained in 4 steps
is inconclusive. As are the interval
[0.34375, 0.375] obtained in 5 steps,
the interval [0.34375, 0.359375]
obtained in 6 steps, the interval
[0.34375,0.351 562 5] obtained in
7 steps, etc.

In cases like this, 2 and 3 d.p.
accuracy is obtained very quickly
after 1 d.p.

The expected number of steps for
2 d.p., requiring an interval of
length < 0.005, is 8 steps.

WWW. yout ube.

+92 323 509 4443,
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Exercise 6A (Page 141)

1 (ii) y
0 X
-5
(i) 1.154
2 (i) 2
(i) [0, 1];[1,2]
(i) 0.62, 1.51
3 (i) y y=x+2

=Y

-2 ol

(ii) 2 roots

(iii) 2, -1.690
4 -1.88,0.35,1.53
5 1.62,1.28
6 () [-2,-1];[1,2]; [4,5]

(ii)
fx) A

/N

YA
(i) —1.51, 1.24, 4.26
(iv) a=—-1.51171875,n=8
a=1.244384766, n=12
a=4.262695313, n=10
7 @ [1,2];[4,5]
(i) 1.857,4.536

8 (i) (a) YA

nmegal ecture@mi |l . con

(b) No root

1
N

(¢) Convergence to a
non-existent root

(i) (a) YA
(2]
=
D
-
-
®
0 — Py
'X
(b) x=0
(c) Success
(iii) (a) y
\1 /-
o| £
(b) x=0
(c) Failure to find root
Investigation (Page 142)
(i) Converges to 0.7391 (to 4 d.p.)
since c0s0.7391 =0.7391
(to 4 d.p.).
(ii) Converges to 1.
\/; <xforx>1, \/; > x for
x<landV1=1
(i) Converges to 1.6180 (to 4 d.p.)
since this is the solution of
x=+x+1 (i.e. the positive
solution of x> — x—1=0).
© (Page 144)
Writing % -5x+3=0
as X —4x+3=x
gives g(x)=x°—4x+3
Generalising this to
X+ (n-5)x+3=nx
. ¥ +(n-5)x+3
gives g(x) =
n
and indicates that infinitely many
rearrangements are possible. 321
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Answers

=

what sapp:

® (Page 146)

Bounds for the root have now been
established.

Activity 6.2 (Page 148)

x,=—2 gives divergence to —o
x,=—1 gives convergence to 0.618
x,= 1 gives convergence to 0.618

x, =2 gives divergence to +oo.

Gradient is
just greater
than zero here.

Betweenx=—1 and x =1,
—1 < gradient < 1.

At this root
gradient > 1
so the root is

x=-1 not found.
gradient = 1.
| | (0] \ 5 x=1,
-2 -1 | 1 2 x \ gradient = 1.

At this root
—1 < gradient < |
so the root is found.

At this root
gradient > 1
so the root is
not found.

Exercise 6B (Page 148)

1 (i) 1.521 *
2 (i) 2.120
3 (iii) 1.503

4 (i) y

y=x>+2

2

ol

(ii) Only one point of
intersection

(iii) F(x) =In(x? + 2) is possible.

(iv) 1.319

WWw. yout ube. com negal ect ur e Page3310f353
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5 (i)
YA

nmegal ecture@mi |l . con

y=In(x+1)

(i) 0.747

6 (i) VY
1

ol

(ii) 0.73909

7 (i) 1.68

(i) x=3fx+2 OCZ%/E

4
8 (i) 229

i) x=2Z44

9 (i) y

S

3 +;;a=®

=y

(6] 1 n
2
(iv) 0.58
10 (iii) 1.08
Co(1 1
11 (I) ( 2) 23)
(iii) 1.35
12 (i) YA
y=2-x/"72
y=Inx
! ! Ly
-2 -1 O 1 2 x
(iv) x=1.31

L 2

13 (i) 3and4

(i) 3.43
14 (iii) 1.77

Chapter 7

Investigation (Page 154)
1.01, 1.02, 1.03

\/m:l+%x or \/;:%(1+x)
=

0.20

(p JN( ] 56)

1+ @F but substituting x =8

i7fto th€expansion gives successive
a ximations of 1, 5, -3, 29, 131,
... and these are getting further
from 3 rather than closer to it.

Investigation (Page 157)

-0.19 < x << 0.60
—0.08 < x < 0.07

Activity 7.1 (Page 157)

For | x| < 1 the sum of the geometric

1 L.
seriesis 71 which is the same as

(1+x)~L

Investigation (Page 159)

(1-%)3=1+3x+6x2+10: ...

The coefficients of x are the
triangular numbers.

©® (Page 160)
V101 = V100 x 1.01
103/1.01

10(1 +0.01)?

10[1+ %(0.01)

1 1

+% (0.01)2+...]

10.050 (3 d.p.)



what sapp:

©® (Page 162)

vx —1is only defined for x > 1.
A possible rearrangement is
1\ = 1),

NPREVENA
Sincex>1 = 0<%<1
the binomial expansion could be
used but the resulting expansion
would not be a series of positive
powers of x.

Exercise 7A (Page 162)

1 () (@) 1-2x+3x2
(b) x| <1
(c) 0.43%
(i) (a) 1—2x+4x?
) x| <3
{c) 0.8%

2 4
X _x

(i) (a) s
b) [x|<1
(c) 0.0000063%

(iv) (a) 1+ 4x+ 8x?
M) x| <3
(e) 1.3%

1_x_ %

(v) (a) 3 9+27
(b) x| <3

(c) 0.0037%

5 _7x _17x*
4 &

(b) x| <4
(c) 0.00095%

2
(vii) (a) —% _X_ 5%

9 27
(b) x| <3
(c) 0.0088%

o1 3x, 27x2
(viii) (a) 2716 + 256

(b) | x| <§

(vi) (a)

(c) 0.013%
(ix) (a) 1+ 6x+20x2
1
(b) | x| < 5
(c) 4%

2

Exercise 7B (Page 166)

1

+92 323 509 4443,

(x)

(xi)

(a) 1+2x2+2x*
(b) x| <1

(c) 0.00020%

2 4axt

(@ 1+ 3 9
) |x| < L
N

(c) 0.000048%

(xii) (a) 1—3x+7x?

(i)
(i)

M) x| <1
() 1.64%

1+3x+3x2+x3

1+ 4x+10x%+20x3

for |x| <1

(iii) a=25,b=63

(i)

(i) 1—6x+24x%—80x3

16 — 32x + 24x2 — 8x3 + x*

1
for | x| <3

(i) a=—-128, b= 600

i 1+x+x*+x3for|x| <1

(i) 1—4x+12x2-32x3

(i) 1 — 3x+9x2 — 23x3

for|x|<%
(ii) 1+%+%for|x|<4
(iii)1+9§x+%
W 1—y+y?—y3...
(ii) 1—%+%—%
(iv)%—xzz+%3—i‘—;

(v) x<-2o0rx>2-2<x<2

no overlap in range of

1

4
1—
(i)
(ii)

1
for | x| <3

validity.

34,2
4x+16x

3,2
5%
-3

—?:ﬁ

2a°

3b°

emai | :

nmegal ecture@mi |l . con

2

® \°
% gl
W

]
|
w

+
+1

=

=

&

2x+5
3(a+4)
20
x(2x+3)
(x+1)
2
5(p-2)
a-b
2a—-b
(x+4)(x-1)
x(x+3)

10

12 ——

13

5x —13
(x-3)(x-2)
2
(x+2)(x—2)
6 W
P>-D(p*+1)

14

15

a—-a+2
(a+1(a?+1)
22 +4y+8)
(y+2Ay+4)
X+x+1
x+1
_(3b+1)
(b+1)?
13x -5
6(x —D(x+1)
43 - x)
22§12
3a—4
(a+2)(2a-3)
3x2—4
xx - 2)(x+2)

@ (Page 168)
The identity is true for all values

17

18

19

20

21

23

24

of x. Once a particular value of x is

substituted you have an equation.
Equating constant terms is
equivalent to substituting x= 0.

1
)

L 19ydeyn

323
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Answers

what sapp:

Exercise 7C (Page 170)

1

10

11

12

13

14

15

11
(x=2) (x+3)

11
x (x+1)

2 2
(x-4) (-1
2 1
(x-1)

(x-1 Gx-1

3 2
5(x—4)  5(x+1)

5 2
2x-1 «x

21
2x-3) x+2)

8 . 9
132x —5) 13(x+4)
9 1
24(3x —2) 24(3x+2)

1 2 3
G+D)  x+2) (x+3)
4 3 2
(x—1)+(3—x)+(2x+1)
12 1
2+x (2-% (2x+3)

Exercise 7D (Page 172

1

0] o3 2
(1-30 (-2
- 4
(ii)
n (2x _ 1)
(iii) 1 +
(x-1?% (-1 (x+2)
iv) ——> 6 5x
8(x-2) 8(x*+4)
(v) 5 —2% 2
(2x?-3) (x+2)
Can be taken further using
surds.
wi 2_1__3
x x* (2x+1)
i) —ox__3
(Bx2-1) «x

Can be taken further using
surds.

WWW. yout ube. com negal ect ur e Page3330f353
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il (2x21+ 1)+(x}—1)
i 84 3
(2x-1 (2x-1? «x

2 A=1, B=0, C=1

3 A=1, B=0, C=—4

Investigation (Page 174)

The binomial expansion is

1—x+3x2

The expansion is valid when | x| < %

Which method is preferred is a
matter of personal preference for
(a) and (b) but for (c) must be (iii).

Exercise 7E (Page 174)

1 (i) 4+20x+72x*
(i) —4—10x— 16x2

2
(i) 2 4 x| 33x7

274 T8 0\
. 1 5x x

™ —5-6 &

2

2 (i) (2x x+2)

(ii)\ix+4x2+...
%f ,b=2, c=4, for | x| <%

7 13x  67x%
2 4 8

2-% (1+x
(i) |x|<1

19
1-x (B-%

G 0,13

o 4x | 8x?
(iii) 73 + 73
2 2x+4

2-x 1+x?

5 (i)

i 5,_15,2_15.3
(ii) 5+§x iX T gXx

2 x—1
Q2+x (2+1)
9.3

i) Lx4+39x2-72
(ii) 2x+4x 8x

Q"

nmegal ecture@mi |l . con

1 2 4

T T a2+
(ii) 1—2x+§x2

Chapter 8

©® (Page 177)

It is the same as

L4J}dx

® (Page 179)

Yes: Using fizg chain rule
dx
;Qng both sides with respect
L
dy X du dx= J‘(Q)du

du’ dx du

Activity 8.1 (Page 181)
Hx-2)2+5(x-2)"+c
= 2(x-2)"2[3(x—2) +10] + ¢

= E(B3x+4)(x—2)"+c

Exercise 8A (Page 181)

10 P +1)3+c
W) f(x2+1)%+c
i) 2 —2)°+c
iv) ((2x*-5)"2+¢
W) EQ2x+1)2GBx-1)+c
(vi) %(x +9)2(x —18) + ¢
2 (i) 222000
(i) 586
(iii) 18.1
30 225
(i) 1
A(-1,0), x= -1

(1+x)4
5 (i) (a) T+c

4 (i)

2
(b) 23

(i) 3232 -1)=0.609



what sapp: +92 323 509 4443, enunil:

6 (i) (a) 8\/;—§+c

(b) 2(1+ 2332+ ¢
(i) k=2,a=1,b=2;32.5

Exercise 8B (Page 184)
10G) Inlx2+1|+¢
(i) %ln|3x2+ 9x—1]+¢
(i) 4e* + ¢
2 (i) 0.018
(i) 0
3 G) j(e—1)
i) (e*—1)
(i) 3(e + e*) — 1 =27.7 (to 3 s.£)
4 0.490; 0.314
5 (i) —(x+2)e™
(i) —(x+3)e™
(iii) (-2, €?)
(iv) —e%; max. at x=—2
wi 3-2
6 (i) %(Zx— 352+ (2x—3)32+¢

Inx+2
2w

(iii) (a) —2xe™*’

(ii) ;2\/; Inx+c¢

(b) 3x%e°
7 @ (a) 3In3

(b) V9+x%+c

11
(i) (b) (f,fe ”2) and
2’2
_L’ 1 e—l/z)
2 2
(c) 0.074

=Y

o]
2
(i) ln(e 2“) ~1.434
2
(iii) In(€ 2“) ~1.434

(iv) The same. The substitution
e*= t? transforms the
integral in part (ii) into that
in part iii).

9 (i) (a) —4xe2¥
(b) e—2x2_4xze—2x2
G 3(1—e29)
(iv) Max. at | 1, Le172
22
10 (i) 1
(i) %ln(p2+1)
(iii) 2.53

Exercise 8C (Page 189)

1 (i) %sin3x+ c
(ii) cos(1—x)+c¢
(iii) —i cos*x+c
(iv) In |2 — cosx|+ ¢
(v) —In|cosx|+c
(vi) —é(c052x+ 1)3+¢
2 (i) —cos(x?)+c
(i) e"*+¢
(iii) 3 tan?x + ¢
(iv) ﬁ +c
3(G) 1
(i)
(iii) 1
(ivie—1
(v) In2

4 (ii)

N =

5 (i) 2005(9—%11)
6 (ii) %n—%x/g

© (Page 190)

Substitution using u = x? — 1 needs

2x in the numerator. Not a product,
not suitable for integration by parts.

1M In

nmegal ecture@mi |l . con
Exercise 8D (Page 193)

3x-2 P3

71 x‘-"_c -
(i) L iIn x_1’+c

1-x 2x+3

x-1

(iii) In
Va2 +1
2
(iv) In| Gt
N

+c

g 191deyn

(v) In|——

2x+1
(viii) ln‘ *12 ‘ +

1—2x+1+x

(i) (a)
1

i) In(})=0.31845
(i) (@) 3+3x+9x2+...

(b) 0.31800

(c) 0.14%
(i A=1,B=3,C=-2
- 125
i) 2+In(*2)=5.73
i) B=1,C=16
i 32

x4

(iii)8+5x+2x2+7f0r|x|<1
(i) A=1,B=2,C=1,D=-3

1 3

W I D) 2 43)

Activity 8.2 (Page 195)

. d .
dx =-— +
i) (a) (xcosx) XsIinx + cos x

(b) = xcosx
= J—x sinx dx + Jcosx dx
= stinx dx

=—xcosx+ jcosx dx
325
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Answers

what sapp:
(c) = Jx sinx dx
=—xcosx+sinx + ¢
. d 2X) — 2x 2x
— (xe”*) =xX2e“*+e
(i) (a) dx( )
(b) = xe¥*= J.erzx dx+ Jezx dx
= ijer dx=xe**— Jer dx

() = Jerzx dx=xe*— %ez" +c

9 (Page 195)

Each of the integrals in Activity 8.2 is
dv

dx
starting with the product xv.

of the form | x —— dx and is found by

Exercise 8E (Page 199)

1 (i) (@ u=x,-—=e
(b) xe*—e*+ ¢
(i) (a) uzx,%:coﬁx

(b) %x sin3x+% cos3x+ ¢

(iii) (@) u=2x+1, % =CosX

(b) (2x+1)sinx+2cosx+ C
(iv) (a) u=x,-—=¢e

(b) —xe2x— ie’zx +c
(v) (@ u=

(b) —xe™*—e*+¢

(vi) (a)

2 (i) ix

(i) xe3*— §e3"+ c
(iii) xsin2x+ % cos2x+c
(iv) 3x°In2x - 1x*+ ¢

3 %(1 +x)2(3x-2)+¢

4 S(x-2)5(5x+2)+¢
5 (i) xInx—x+¢
(i) xIn3x—x+c¢

(i) xInpx —x+ ¢

WWw. yout ube. com negal ect ur e Page 33507353

+92 323 509 4443,

enmai | :
6 xZe*—2xe¥+2e¥+¢

7 (2—x)?*sinx—2(2— x)cosx
—2sinx+c¢

Exercise 8F (Page 201)

160 2+
(i) —2
(i) 2¢2
(iv) 3In2 -1

T
(v) 4

wi) $In4-7

2 (i) (2,0),(0,2)

(i)

YA

y=@ e

D

(iiii) e2 +®
3 (i)

» >
&v X

1

y=xsinx

0 | T x

(ii) ©
4 5In5-4

T
5 -1

2
6 —Lsoarca=2 square units

15 15

7 x=0.5; area = 0.134 square units

8 The curve is below the trapezia.

9 (i) %xsinkx+%coskx+ c

(ii) cos2x— cos8x

nmegal ecture@mi |l . con

11 (i)

7

l\
y=2+e 2

=Y

0]

(iv) 2.31

12 (i) 3

(i) @3)
Qage 204)

You will return to these integals in

@ +Activity 8.3.

Activity 8.3 (Page 205)

(i) This is a quotient. The derivative
of the expression on the bottom
is not related to the expression
on the top, so you cannot use
substitution. However, as the
expression on the bottom can
be factorised, you can write it as
partial fractions.

JZ";de
x“+2x-3

:J(xi?’) dx_Juin a

=2In|x+3|-In|x—1|+c¢

(i) The derivative of the expression
on the bottom line is 2x + 2,
which is twice the expression on
the top line. So the integral is of
the form

f(x)
—~ dx=klIn|f .
kj i) dx=kln|f(x)| + c
This integral can also be found
using partial fractions, but using
logarithms is quicker.
in‘*‘l dx
x*+2x -3
1 2x+2
= d
2 -[ P23

=%ln|x2+2x—3|+c



+92 323

(i) This is a product of x and

what sapp:

e*, There is no relationship
between one expression and the
derivative of the other, so you
cannot use substitution. As one
of the expressions is x, you can
use integration by parts.

Jxex dx = xe*— Je" dx
=xe*—e*+ ¢

(iv) This is also a product, this time
of xand ex*. e¥* is a function of
x2, and 2x is the derivative of x2,
so you can use the substitution
u=x%

Using u = x?

J.xe"2 dx= J%e“ du
= %e“ +c
=1+

(v) In this case the numerator is the

differential of the denominator

and so the integral is the natural
logarithm of the modulus of the
denominator.

J'Zx + cosx

x? +sinx

Since -4 (x%+sinx) = 2x+ cos x

dx
the integral is In| x> + sin x| + c.

(vi) This is a product: sin®x is a
function of sin x, and cos x is the
derivative of sin x, so you can
use the substitution u = sin x.

Using u =sinx
J.cos xsin?xdx= Juz du

13
—3u +c

=% sinx+ ¢

Exercise 8G (Page 206)

1 () %sin(.’ax—l)+c

-1

(i) ———+
x*+x-1)

c

(i) —e'*+¢

(iv) %sin2x+ c

509 4443,

10

xIln2x—x+¢
_ -1
4(x*-1)?

(v)

(vi) +c

wii) 12x—3)"+¢
x—1 ‘ 1

-——+c
x+2

1
n x-1

(viii)

(ix) %x“lnx— %x4+ c

x-3

In Y1

(x)

‘+c

1
(xi) 22+ ¢

(xii) —In(sinx+ cosx) + ¢

(xiii) —%xz cos2x+ %xsin 2x

+%c052x+ c

1

2c052x+%cos32x+c

(xiv)

w oo

i
i) 3In4
(i) 48 + 81In4
(iv) 2

W) Sn2 -7

[SNIIN

lov2-1)
0.24
1 1

U

- 1,..-2x_1,2
i) —xe x—4e *+¢
(ii) 0.112

(i) —%cos(Zx— 3)+c
i) ety

(iii)%1n|x2—9|+c

(M %

am l_3
4 4e?

11_3

44 4e?

emai | :

nmegal ecture@mi |l . con

Chapter 9
Exercise 9A (Page 212)

P3

1 % is the rate of change of
velocity with respect to time, 1)
i.e. the acceleration. ]
The differential equation tells '9:
you that the acceleration is ©
proportional to the square of
the velocity.
ds _k
2 =2
dt 2
dh _ _
3 4" kln(H- h)
4 dm_k
dt m
s 92_;Jp
dt
de _
6 10 ko
7 d6_ _(6-15
dt 160
g IN_N
dt 20
dv_ 4
9 — =~
e Jy
10 44 _2k/n_ K
& Ja VJa
do_ s
" ds 4
v__av
12 dt = 11251
13 dh_ 2=k
dr 100
Investigation (Page 214)
H is about (70° N, 35° W) and L is
about (62° N, 5° W) so they are
separated by 30° in longitude at a
mean latitude of 66°. Reference to
the scale shows this to be about 900
nautical miles.
1035
2 996
3
2 957
0 1 >
900 327

nautical miles

Www. yout ube. cont negal ect ur e Page3360f353
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what sapp:

The mean level is 996 and the
amplitude 39 so a model is

=996+ 39 cos(%)

dl_—S% . (TX
and = 90 51n(900)
or —p =—asin bx

with a=0.136 and b= 0.0035.

The model covers the main features

of the situation.

©® (Page 215)

—1,2
In|y|+c =3x"+¢,

can be rewritten as

ln|y|=%x2+(c2—c1).

Exercise 9B (Page 217)

1) y= fx3+c

(i) y=sinx+c

(i) y=e*+ ¢
(iv) y= —x3’2 +c
. 2
2 (i) y=-
(x+0

i) y?=2x3+c
(i) y= Ae*

(iv) y=In|e*+ |
(v) y=Ax

(vi) y = (x +C)

IPQ
(sinfed\O

(vii) y=-—

(viii) > =A(x*+1)-1
(ix) y= —ln(c— %xz)
3= 4x2 +c

x) y’= 2x2 Inx -

Exercise 9C (Page 221)

1 () y:%x3—x—4
i) y= X/
(i) y=In(3x%+1)

1
2-%

(iv) y=

Www. yout ube. cont negal ect ur e Page3370f353

+92 323 509 4443,

emai | : negal ecture@nuil . comr
v y:e(xz_l)/z_l 8 (ii) —— L
. -1 x+1
(vi) y=secx
(i) 0=20-Ae? (i) y= ( 1)) * (x# *1)
S 090 _ 1502t
(ii) 6=20—15¢ 9 %:%
(i) £=1.01 hours b
(ii) k=5000;141m (3 s.f.)
(i) N=Ae' d K
ar _ —

(i) N=10e' W 4~ PG P 1= 10000
(iii) N tends to oo, which would (iv) 104m (3 s.f.)

never be realised because of 10 i 1 1

the combined effects of food @ 3(2 - x) + 3(1+ x)

shortage, predators and
human controls.

é = z; s=V 4t + ¢

dt s

WM L1

3y 33-y)

k<0
31
0 k|
7 (i) N=1500e00347¢
=1500 x 21720
(i) N=24000

(iii) 11 hours 42 minutes

i

12

13

14

15

16

17

18

_—!

(i) 3

(iv) 1,28 heurs (2 d.p.)
(=0 %28kg

(i) 2xsin2x+ cos2x+ ¢

(iii) y? = 4x? + 4xsin2x
+2cos2x+1

Gx-1 «x
(i) 1= 1.967 (3 d.p.)

(iv) 500 and 3550
(ii) cotx;In(sinx) + ¢

(i) y=0.185 (3 s.f.); minimum

@ lny—iln(4-y)

(i) 4
e +1

(iii) The value of y tends to 4.
i) 0=A(1+3e)

(i) %
i) tan’l(% - %e’”)
(i) The value of x tends to tan’l%

(i) As H 1e’2‘ increases so does
-1(1_ 1,2t
tan (2 € )

+h
10-h

(iii) 100 ln( ) —20h
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Investigation (Page 226)

Using the assumptions in Exercise
9A, question 7: the rate of cooling is
proportional to the temperature of
the tea above the surrounding air.
The initial temperature is 95°C and
the cooling rate is 0.5°Cs™!. So

0 =15+ 80e /160,
Adding 10% milk at 5°C gives
0=15+71e 160,

The final temperature is lower if the
milk is added at the end.

Chapter 10

® (Page 228)
_ - - —
OP=0A+A(0OB-0A)

— =
=(1-1)OA+10B

Activity 10.1 (Page 229)
(ii) -2 0 2 3
9\ \=5)(-1)\1)
33),(4),( 8
2 3 11
v 0,1,1,2
(v) (a) Itlies between A and B.

(b) Itlies beyond B.
(c) Itlies beyond A.

Activity 10.2 (Page 231)

YA

o o}

[}

+92 323 509 4443,

=Y

emai | :

(i) and (iv) are the same since putting

A=-11in (i) gives

and ( 1) is parallel to (3j
2 6

(iiii) is parallel to (i) since the
direction vector is the same.

(iv) is parallel to (ii) since
-1)_ (1
2) \=2)
Exercise 10A (Page 232)

1 () (a) 2i+8j
) 68
() 3i+7j

(i) (a) —4i—3j
(b) 5
(e} 2i+ 1.5
(iii) (a) 6i+ 8j
(b) 10
(e) i+3j
(iv) (a) 6i- 8j
(b) 10
() 0
v) (a) 5i+12j
(b) 13
(¢) —7.5i—2j

2 Note: These answers are not
unique.

o o)
w o)
(1))
(o)
o i
oo )

3 Note: These answers are not

nmegal ecture@mi |l . con

(vii) T= l(_i)
(viii) r= (_éj + A(_i)

oL 493deyn v
W

unique.
2 3
i) r=| 4|+A|6
-1 4
1 1
(i) r=| 0|+A|0
-1 0
1 5
[i)r=0[+A| 3
4 -6
0 2
(ivir=|0|+A| 1
1 3

1
) r=1|2
3

4 (i) Yes, A=2

(ii) Yes, A=-1
(i) No
(iv) No
(v) Yes, A=-5

-1 -1
5 () r=|-2|+4 3
1 -3

(33

(i) (=2,1,-2)

g

Exercise 10B (Page 238)

4
.
(i) (l)
G (2
5

|
ol
(

1
1
. -5
(iv) 6
329
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E ise 10C (P 242
P3 o (g) xercise (Page ) 9 (Page 247)

1 53.6° A three-legged stool is the more
- 2 (i) Intersectat (3,-2,5) 2 81.8° stable. Three points, such as the
ends of the legs, define a plane but a
(ii) Parallel 3 8.72° . . .
) fourth will not, in general, be in the
S (iii) Intersect at (3, 2, -13) 4 35.3° same plane. So the ends of the legs
5 (iv) Intersect at (1, 2, 7) 5 61.0° of a three-legged stool lie in a plane

but those of a four-legged stool need

i) A 4) » U)s F 4; s .
) Ske 6 M A,0,0)F4,0,3) not. The four-legged stool will rest
tvid Intersect at (4,7, 11) i) 114.1°109.5° on three legs but could rock on to a
{vii) Skew (iii) They touch but are not different three.
3 (i) 12.8km perpendicular.
(i) 20kmh™!, 5kmh™! 7 (i) S5i+3j+4k @ (Page 250)

. . (i) 90° wi lines.
(iii) After 40 minutes there is a -
collision. Exercise 10D (page 245) (i) N ‘&as the pencil remains
;@ndicular to the table.

— 0\ = (7 1() (&) (-2,6,7)
4 (i) OL= ; OM = ; . < |
45 35 (b) 29 units
ON =(4j i) (@ (3,-1,7) Actlwty 10.3 (Page 255)
(b) V17 units @ Repeat the work in Example 10.13

(b) 7 unit by @, 5 by and 3 by y; and (3, 2, 1)
units
BM:r= ( j ( \' by (n,, ny, n;) and 6 by d.
CN:r:(B) ( ) @ Exercise 10E (Page 257)
7 a G %,3

1 (i) Parallel, line in plane

(i) AL:r—( ) ( ) (iii) (@) (2,7,-3) 0& replacing (7, 5, 3) by (@, B, 7),s07
0
1) 2 2410 units ()
3 /35 unit:
(i) (@) (7, 3)

4 |,\/50 (i) Parallel, line not in plane

) (7,3)
(iv) The lines AL, BM and CN Giii) Not parallel
are concurrent. (They are 5 A -5 (iv) Parallel, line in plane
the medians of the triang i) r=) 0+
(v) Not parallel
and this result holds or the 0 3 ] . .
medians of any tri t 3 731 (vi) Parallel, line not in plane
5 (_2) —6, _1); 30 (iv) 1], 63.4° N 2 N 5
3 2 (i) LM=| 2 [;LN=| 2
6 No 4 2 -1
7 6 units, 9 units, V77 units tv) Spider is then at (i) x— 4y —3z=-2
P(2.5,2,1.5) and
-0.25 — — 3 (iii) B
8 (i) 0 OP.AG=0, |OP| 3.54
0 4 (iii) Three points define a plane.
5 (i) (1,0.5,0
e ) fiv) (1,0,-1)
(i) (0,0.05,1.1) (i) 41.8°
5 (i) (0,1,3)
0 1 (iii) 027° "
(i DE: r=| 0|+ 1| 0 (i) (1,1,1)
(iv) (2,2.5,2)
1 0 i (iii) (8,4, 2)
(v) t=2,v5km
0 Y (iv) (0,0,0)
EF: r= 0 +A ; (v) (11,19,-10)

WWW. yout ube. com negal ect ur e Page3390f353
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2 1 1 G 5 V8
(i) (@ r=|2|+A4 -1
3 2 (ii) 62.2°
(b) (1’ 3, 1) (iii) 20.9
iv) (4,6,-3
(© \/g (iv) ( )2 1
2 2 ; L - .
) @ r=|3|+A4]5 12 0 PQr= i A ;
0 3
-2 1
) (1,0.5,-1.5) X¥er=| 2 |+ 4|2
(e) 3.08 3 3
3 1
(i) (a) r=|1|+2]0 (iii) Yes
3 0 (iv) Yes, (1, 4, 6)
(b) (0,1,3) 2
3 13 (i) | -1
(c) 3
2 3
(iv) (a) r=| 1|+A| -4 (iii) (10, -5, 15)
0 1 5
(b) (2,1,0): Aisin the plane (iv) OA:r=A4| -12 |;
(c) 0 16
1 5 1
(v) (@) r=A[1 ABir=|-12 |+ u| 5
1 16 1
) (2,2,2) ) 69°
(c) \/ﬁ 2
(i) x+2y+3z=25 14 (i) | -3
4
(i) 206 =150+ 56
i) W is in the plane: 3 2
(iii) Jlgepane, (i) r=| -8 +2l =3 :
UW.UV=0 12 4
13 (-1,-2, 4)
M r=| 5|+ 1
0 - (iii) (0,-3.5,6)
(i) (4’ 2, 6) (iv) 15.6° (1 dp)
(i) 11.2 15 (i) 2x — 3}/+ 7z=-5
i) 4.1° (i) r= (130i— 40j + 20k) +
A(8i-4j+Kk)
(i) 32.3°
(i) 10i + 20j + 5k
(iii) 35.6°
(iv) 135m
(1), (8
(i) AB=| 2[;AC=|—4|; 2 1
1 1 16 (i) r=|3 |+ 1
in both cases the scalar 5 -05
product=0 (i) (12,13,0)
(iii) 132.9° (i) 109.5° (1 d.p.)
(iv) 8.08 (iv) 25m

nmegal ecture@mi |l . con

17

20

21

M (3,1,0)
(ii) 63.4°

1 1
(ivir=|1[+A
1

w (327 or(L-1-1
3'3°3 373

(i) b=-2,¢c=3

1
)

2
2

oL 493deyn

(ii) 6x+y—8z=6

-1 3
3+ -1
5 —4

5
(i) r=| 1
-3

(i) 7x— 11y +8z=10

i r=

i 3i+2j+k
(i) 72.2°
Giii) r=3i+2j + k+ A(6i + 2j — k)

©® (Page 265)

7, is parallel to z; and 7,

(the common line is at infinity).

Exercise 10F (Page 265)

1

3 15
M r=|1|+4 27
0 7
0 0
5 -4
0 16
-1|+4| 15
-1 13
2 11
ivr=| 0 |[+4] 4
4 21

(i) 56.5°
(i) 80.0°

i) r=

(iii) r=

(iii) 24.9°
(iv) 63.5°

(el
S SIH

331
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what sapp:

4

5

~N

10

1

12

41x—19y+26z=33

x+3y—2z=-8

60x+ 11y+100z=900;
60x—11y—100z=-300;

5 0
r=|0|+¢| 100 [;6.3°
6 -11

(i) x+3z=-800

(ii) Normalis approx. 18.4° to
the horizontal

(iii) 14x — 15y + 3450z

=15950

(iv) x=154,
y=-11361 — 62396.7,
z=-51—266.7

(v) 62 km (assuming seam is
sufficiently extensive)

(i) r=(2i+3j+5Kk)+
A(3i+j—2k)

i) A=1;(5,4,3)

(iii) (9.5, 5.5,0)

(iv) (6.5,4.5,2); 1.87 (3 s.f.)
(v) i+2j=3k; 38.2° (1d.p.)

a
@ |p
1
2
— | 53| =
(ii) AB= 0 ; AC=

(iii) 2a—3b=0;
(iv) 3x+2y+
(v) 36.7°(1d.p.

(vi) (3%,-3%,2%)

i) (6,4.5,3)

(iii) x—2z=0
0 1
(iv) AOBC:| 2 |; DOBE:| 0 |;
-3 )

41.9° (1d.p.); 138.1°
(i) a=-2
(ii) 3

Www. yout ube. cont negal ect ur e Page3410f353

+92 323 509 4443,

emai | :
13 (i) 4x+2y+2z=8
(ii) 77.4°
14 (i) 57.7°
(i) r=2i-k+A(4i-7j+5k)
15 (i) 2x-3y+6z=2
(i) 2
(i) r = A(6i + 2j — k)

Chapter 11

Activity 11.1 (Page 272)

Real numbers

Irrational numbers

2

Rational numbers
~1.4142 355
113

Positive
integers

Negative
integers

=l

& 355
T 113

4 I \n/ I
3

11.2 (Page 272)
( itive integer

) Rational number

(i) Irrational number

(iv) Negative integer

(v) Zero, negative integer

(vi) No real number is possible

Activity 11.3 (Page 273)

z=3-7i

=2z>—6z+58
=(3-7i)2-6(3-7i) +58
=9 —42i+49i> — 18 + 42i + 58
=9-42i—49-18+42i+58
=0

nmegal ecture@mi |l . con

© (Page 274)
P=—,i*=1,°=i
All numbers of the form

® i*"areequalto 1
® i**lareequaltoi
® i*"2are equal to -1

® i*"3 are equal to —i.

Activity 11.4 (Page 275)

(i) (a) 6

(b) @

(
o

Qhey are all real.

i) z+ 2t = (x+iy) + (x—1iy) =2x
zz* = (x+1iy)(x—1iy)
=x% —ixy+ixy —i2y?
=x>+y?
These are real for any real values
of xand y.

Exercise 11A (Page 275)

1 (i) 14+10i
(ii) 5+2i
(i) —3+4
(iv) —1+i
(v) 21
(vi) 12+21i
(vii) 34291
(viii) 14 + 5i
(ix) 40+ 42i
(x) 100
(xi) 43+ 761
(xii) —9 + 461
2 (i) -1%i

(i) 1%2i

(iii) 2 + 3i

(iv) -3 £5i



what sapp: +92 323 509 4443,

) 1+2i
wi) 2+ 2i

3 (i) 2i
(i) 5iand -3i
(iii) L +iand -1 +1i
(iv) 2—3iand -2 - 3i
(v) —1-4iand 1-4i

(vi) —3i and 2i
a4 (i) 2

(i) —4

(iii) 2-3i

(iv) 6+4i

(v) 8+i

(vi) —4-7i

(vii) 0

(viii) 0

(ix) —39

(x) —46-9i

(xi) —46-9i

(xii) 52i

Q (Page 276)

Yes, for example % = %, although
2#4and 3 #6.

Activity 11.5 (Page 277)

1
x+iy

= (p+ig(x+iy) =1
= px+ipy+igx +igqy*=1

=p+iq

= (px—qy) +i(py+4qx) =1
px—qy=1and py+gqx=0
Solving simultaneously gives
x 4

2"1_x2+y2

P:x2+y

1 _ x-iy
x+iy x2+y2

so

© (Page 279)

1 1

;:—i’—:—l)—:i
1

i? i

All numbers of the form

Exercise 11B (Page 279)

i‘%" are equal to 1

Pl equal to —i

1
S, are equal to —1

1 .
e 2T€ equal to i.

- 3 1.
1 (i) E_El

G 2+ Li
(i) —7+ =1
iv) 2+4
(v)
(vi) 7—5i
(vii) —i

(viii) 5z — 521
ix) L+
 —-1-3i
i) a=5b=2
(ii) a=3,b=-7
(iii) a=2,b=-3
(iv) a=4,b=5

—_513__3
(v) a—i) b= 1

. 1 1
(vi) a——z, b_ﬁ
a=2,b=2
(i) z=2-1i
(ii) z=3+1
(iii) z=11 - 10i
(i) 2= =35+ 1490

34

emai | :

nmegal ecture@mi |l . con

5 0,2,-1%3i P3
2x
==

8 (i) a®-3ab*+ (3a*b- V)i

(i) z= 1,—%1%&1

L1 133deyn

9 (i) (z—a)(z—p)

=22—(a+pf)z+af
(i) (a) z>—14z+65=0
(b) 9z2+25=0
(¢) Z2+4z+12=0
(d) 22— (5+3i)z+4+7i=0
10 (i) 3iand-3i
(ii) 2+iand-2-i
(i) 3 + 5i and -3 — 5i
(iv) 3—4iand -3 + 4i
(v) 5—2iand -5 + 2i
(vi) 2—3iand -2 + 3i

Activity 11.6 (Page 281)

(i) Rotation through 180° about the
origin

(ii) Reflection in the real axis

@ (Page 281)

zand —z* (or —zand z*) are
reflections of each other in the
imaginary axis.

Activity 11.7 (Page 283)

333
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Exercise 11C (Page 283)

P3

Im A

- 1

x

Answers

W V13
(i) 4
(i) 26
(iv) 2
(v) \/a
(vi) 5

2 Im A

3 Points:
(i) 10+ 5i
(i) 1+2i
(i) 11+ 71
(iv) 9+ 3i
(v) —9-3i

4 (i) 5
(i) 13
(i) 65
(iv)

13

) <

z
lzwl=lzllwl, | Z|=

|z
lwl’

W_
z

[wl

|z

5 (i) z

emai | :

,121
2

20=1,]2%=1
Z'=1+i,|2' =2
z2=2i,|2%|=2
P=-2+2i|2|=22
Zt=—4,|z*|=4

2 =—4—4i,|2%| =42

~i1z=

1
V2

(i) Im A

Re

nmegal ecture@mi |l . con

(iii) The half-squares formed :@ o

enlarged by 2 and rotat

through % each tiﬁ
Half a turn abm&fz ed
by reflection imsthé\waxis is the
same as regﬁm in the x axis

followed

ge 284)

| is the distance between the
inés representing z, and z, in the

rgand diagram.

©® (Page 285)

(i)

Im A

X 3 +4i

If a turn about O.

L
i X 3+4i E
o™~ ... L Re
(i)
Im A
X 3+4i
Y Re
(?) (Page 286)
i, mA
X 3 +4i
—1+2i
X
0 \ Re
(i)
« Im A
K X 3+4i
—1+2i X
X \‘
0 kS Re

WwWw. yout ube. cont negal ect ur e Page3430f353
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(iii) (iv) 2

« Im A ImA Alm
“‘ P = e Sy ] I~
] 13l 4 5 v e
L S S ol L5k g
X 3+4i : : S ]
8 R v 7 e ?.
-1 +2i “‘ 3 4 °
X \\ K ~ = a4 > =Y
1 Re T -
0 i Re (v) |z| is least at A and greatest at B.
Im A [12—5i| =144+ 25=13
AtA,|z|=13-7=6
. AtB,|z|=13+7=20
Exercise 11D (Page 286) / N
o R'e 3 (i)
1) Im A 0 2 4 6 8§ Re
61 >
NP u
/] AN 2 7/ \
2 (vi) Im A
> vi m &1 A4
O Re -4 J =1 1
N L/ . ‘ j
> |
o Re
-8
(ii) ImY
ImA
X . (i) 7,13
/ N B X
/ \ 4 Not possible
(vii) -
> Im A 5 Imj
(¢} 4 Re
\. /
AN
VAVAEIIRNAN .
(i) ImA 0 Re ol |2 4 Re
A N H—i
/’ \\\ \\ N / ,/
7 \ N L
i (i)
\ Vi (viii) Im A Im A
N 0 /
N > > 2%
Re
i
) 0 Re (6] Re

335
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Answers

what sapp: +92 323 509 4443, enunil:
i fm A 9 (Page 290)
(i) 2(cos(m—a)+isin(m—a))
—1+i (i) 2(cos (—a) +isin (-a))

0L % . | Re  Activity 11.11 (Page 290)

T T T

4 6 3

- tan 1 NE NE)

. . 1 5

S A

,* Re
y 1 | 5 1
,,: Ccos \/5 7 5

©® (Page 288)

Mz
2

(i) —

(iii) —

NS

Activity 11.8 (Page 288)

(i) (a) 45°
(b) 63.4°
(c) 89.4°
(d) —63.4°
(e) —88.9°
(f) —89.7°
—90° < tan"! x < 90°

- T - T
=< 1 < &
(i) 2 tan™" x )

Activity 11.9 (Page 289)

arg(l+1) = %,

arg(—1+i) = %,

arg(-1—-1i) = —%

WwWw. yout ube. cont negal ect ur e Page3450f353

L J
Exercise 11E (Page 29‘@

\
\\‘r

16) r=80=C
(i) r 5

i) r=3,60=2.3
(iii) r=4,0=:%
(iv) r=3, -3
2 (i) =1,0=0,
=1(cos0+1isin0)
r=2,0=m,
z=2(cosT +isinT)
iii =3’9=E)
(iii) r 2
_ M, T
z—3(c052 +1sm2)
) r=4,0=-7,

z= 4(cos (—g) +1isin (izt

v) r= \/E,Q:%,

z= \/E(cos% + isinE)

4
(vi) rZS\E’G:_SZn’
_ _3n
z= Sx/i(cos( 1
(ii) r=2,0= 7’3‘
z= 2(cos (—g) +1isin (—E
(iii) r=12,0= g,

z= 12(cosE + isinE)
6 6

) +isin (%))

nmegal ecture@mi |l . con

(ix) r=5,0=-0.927,
z="5(cos(—0.927)
+1sin(-0.927))
x) r=13,0=2.747,
z=13(cos 2.747
+1sin 2.747)

xi) r=/65,60=1.052,
z= \/g(cos 1.052
+1isin 1.052)

(xii) r=+/12013,6 =-2.128,

z=1+/12013(cos (—2.128)

+1isin (-2.128)

N

497 — 5.4561

(vi) z=—

4 (i) a—T
(ii) —«
(iilT—a
iv) &
(|v)2 a

T
7+
(v) 5 a

5 (ii) Realpart:%

6 (i) Im A

4_

(i) Real part = i
7 () (a 2+i
) r=+5,6=0.464
(ii) —3+2iand 3 -2i



what sapp: +92 323

8 (i)
Im A
3
2
A
1
C
(6] 1 >
g 4 Re
-1
B
-2
OACB is a rhombus.
o 34
(ii) §+§l

9 (Page 293)

arg(z, — z,) is the angle between
the line joining z, and z, and a line
parallel to the real axis.

Exercise 11F (Page 294)

1 (i) Im A

509 4443, emil :

(iv) Im A

[1 T2

(v) Im A

S NEY N
AY
\
(i) Imf
4t |
0 Re
(i) Im A
+3 (0] R’e

(vi) Im A

NEY

-3 (6]

(i) V12
a4 () r=1,0=3n
(ii) wz modulus = R,
argument = 0 + %11:

i: modulus = R,
w

—9-2
argument = 6 — i1

Y

Re

A

nmegal ecture@mi |l . con

(i) The three points are the
same distance from the
origin and separated by

equal angles of 2?1'5 (i.e. 120°).

Giv) (2 +V3) + 2V3-1)i
—(2-3)=(2Y3+ )i

5 (i) 2+iand-2+1i

LL 193dey) ;v
W

(ii) 2+1:r=2.24,
6 = 0.464 radians

-2 +1:r=2.24,
6 = 2.68 radians

(iii)

Im A
3
} x
B8 D2 1o ] Re
1

6 () 1—+3i, -1-+3i
(i)
Im A

o)

(i) 1— /3i: r=2,9=—§

2
—1—\/§i:r=2,0=—?ﬂ:

(iv) The three points are the
same distance from the
origin and separated by
equal angles of Z?TE (i.e. 120°).

7 (i) (@ 1+2i
1, 1.
(b) -3 + 51
. 3T

(i) 4

(iv) OA = BC and OA and BC
are parallel

337
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Answers

what sapp:
8 (i) u:r=x/§,t9=——

uz:r=2,9=%ﬂ:

(ii) Im
A
4
2
& u
o >
4+ B 2 - 2.3 4 Re
Rt ;
“Ju e
S I
.
=7
A
=4

Activity 11.12 (Page 296)
(i) Rotation of vector z

T
through 5

(ii) Half turn of vector z
. T .
(= two successive > rotations:

-1=ix1)

9 (Page 299)
3+iand -3 —i

Exercise 11G (Page 301)
1 (i) 32(cos0.6 +1isin0.6)

(ii) 2(cos(—0.2) +1isin(—0.2)

(iii) 12(cos g + ising

(iv) 3(cos g +1isi

5 51

24( o —)
(v) cos n in n
31 31
6(cosf +isin )
(vi) 6(cos 1 +isin 1

7T
2 (i 6( _+ _)
(i) cos isin 0

(i) (cos— +1isin )

cos [~ isin-5)|
SENENNE

(v) 9(cos == +isin 2?7‘)

WIN NW

(iii)

+92 323 509

3

4443,

emai | :
(vi)

28] bsin -3

(vii) 432(cos 0 +1isin 0)

31 31
(viii) 10( add _)
c0s = +1isin "
(ix) J—(cos +1sm7n)
3 12
Exceptions

(i) ifz=0then % does not exist

(iiii) if z = real and negative then
1) _
arg| | =argz

(i) Enlarge from O x3
(i) Enlarge from O x2 and

T
rotate +—
2

(iii) Complete the parallelogram

32,0, 2iz ¢
(iv) Reflect in the real

(v) Find where the c@ith
centre O thr gh z meets the

positive r@
(vi) Com, e similar

% .1, zand 0, z, 22
%1. 341,
(cos%+ ismSZn),
\@(cos5+isinE ,\/54_1
3 3 2\/5
T 5T
6 (i) —,>
4%
(.ii)&—%’t
Im A
3 xa
X8|
5 5p-B ) 6 Re
o -

(iv) Perpendicular bisector
of line from a to 3

131

(v) N

nmegal ect ure@mai | .

con
7 W -1
i B2
V2
(iii) —1.209 +0.698i

(iv) —13.129 + 15.201i
8 (i) (a) 10¢!

(b) 4

(c) 6ed

(d) 3el

(e) 3e¥

(A 4e

(i) (a) s3+isin3)
(cos(=2)+1isin(-2))
Qi

(cos1+isin1)

() (b) 8(cos5+isin5)

+2(cos5+1sin5)
=4

(e) 3(cos7 +isin7)
x2(cosl+1isinl)
=6(cos8+1isin8)

(d) 12(cos5 +isin5)
+4(cos4+1isin4)
=3(cosl+isinl)

(e) 3(cos2+isin2)
X (cos1+isin1)
=3(cos3+isin 3)

(f) 8(cos3+isin3)
+2(cos4 +1isin4)
= 4(cos(—1) +isin(—1))

Exercise 11H (Page 304)
12-i,-3
2 z=7,4 +2i

3 p=4,9=-10
other roots 1 + 1, —6

4 z=3+2i,2+i
5 z=13i,4+ /5

6 (i) w*=-2i,w?=-2-2j,
wh=—4
(i) p=—4,q9=2

(iii) twoof 1 —1,1 +1,-1, -4

WWW. yout ube. com negal ect ur e Page3470f353
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7 (i) A#=-3-4i,a°=11-2i 9 (i) a?=-15+8i, '
) 1M1 ) f=-2+ 243, P3
Gi) —1-2i,-5 o =47 - 52i .
’ i y=-2-23i
(ii) k=3
G| - 5| = 5, arg(-5) = i) —7,1—4i W) |oc|=3, arga=0
|-1+2i| =5, i) —7,1—4i " o .
arg (-1 +2i) = 2.03 arg (1 + 4i) = 1.326 Bl=4 agf = ;
g _7) = 2n =
|-1+2i| = 5, arg(-7) =7 vl =4 argy =2 3
arg(-1+2i) =203 arg (1 —4i) =-1.326 ‘5‘21 arg(é)=_2£ -
Im A (iv) c=5 vl 7 y 3
ImA
— Im
L T 21 K2 3
e IS 14
E BX. oAz [
=5 —% -1 O Re > I I o “ >
’ 20 3 Re 2 1.7 3 Re
—142i/ XE -1
— 1y L rx 7 243
TJ
8 ) f=-1+3i,y=-1-+3i 12 Gi) 1-2i
10 () a*=-8-6i,a®=26—18i i
iii Im
(i) lz_l_ﬁilz_l_,_ﬁi i) =20 A

B4 47y 4 4

Giii) || = 4argar = 7 (i) z=-2,-1%3i \
R A x

‘ﬁ‘zz’argﬁ:%n \
|- 143i|= V10, S .

21
[7|=2agy =7 arg(—1+3i) = 1893 of 1 Re
i |- 143i|= V10,
) Im A
arg(-1+3i) = 1.893
ﬂ)i( ‘ Im A
P 3 1431 X 3
\\ 3?
a lx
N ay) -
4 vlo Re | _
/ﬁ -1 —% (6] Re
V.
X
! ~1-3i X s

339
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what sapp:
Index

Page numbers in black are in Pure Mathematics 2. Page numbers in blue are in Pure Mathematics 3.

acceleration 209
addition
of complex numbers 274
of fractions 165
of polynomials 3
algebraic fractions 164
expressing in partial fractions 167
alternating current 74
angle
between a line and a plane 256
between two lines 240-242
between two planes 264
Argand, Jean-Robert 281
Argand diagram 281, 284-286

binomial coefficients 155-156
binomial expansion 155-162

use of partial fractions 173-174
Brahmagupta 271
Biirgi, Jolst 43

cartesian equations 227, 249
chain rule 80, 93,97, 108, 111
reverse 179
change-of-sign methods 137-141
co-ordinate geometry 227
cobweb diagram 145, 146
complex conjugates 274-275
complex exponents 299-300
complex numbers
addition 274
conjugate 302
division 276-278, 296-297
equality 276
and equations 302
geometrical representation 281
historical development 272
modulus 283
modulus—argument (polar) form
287-291, 293-294, 296-299
multiplication 274, 296-297
notation 273
real and imaginary parts 273

+92 323 509 4443,

emai | :

square root 278-279, 298-299
subtraction 274
sum and difference 281-282
vector representation
281-282
complex plane 281
compound interest 123
compound-angle formulae 55-58,
296
cosecant (cosec) 52
cosine graph 76
cotangent (cot) 52
Cotes, Roger 299
counting numbers 271
cubic equations 302
cubic expressions 3
curves, modelling 30-35

decimal search 138-139
Devi, Shakuntala 154
differential equations
forming 209-212
general solution 214-215
order 209
particular solution 217-220
differentiation
of implicit functions 97-102
of natural logarithms and
exponentials 85-89
parametric 108-111
product rule 78-80
quotient rule 80-82
of trigonometrical functions
92-95
distance
between a point and a line
244-245
of a point from a plane 254-255
division
by zero 279
of complex numbers
276278, 296297
of fractions 164

nmegal ecture@mi |l . con

P2

xapuj

of logarithms 25
of polynomials 5-6
double-angle formulae 61-65

e (base of natural logarithms) 32,
41-42
equations
numerical solution 136-151
rearranging 143, 146-147
of a straight line 30-31, 32
of the tangent to the curve 108
error (or solution) bounds 139
Euler, Leonhard 299
existence theorem 303
experimental data, mathematical
relationships 30
exponential curves 43
exponential functions 28, 43
differentiation 85-89
infinite series 123
integrals involving 117, 183184
exponential growth and decay
43-44
exponential relationships 33-35
exponents, complex 299-300

factor theorem 9
factorisation, of algebraic
expressions 164, 165
fixed-point iteration 142—-147
fractions
addition and subtraction 165
multiplication and division 164
simplifying 164
Fundamental Theorem of Algebra
302-303

Gauss, Carl Friedrich 272, 302
general binomial theorem 155-158
geometric progression 157

Girard, Albert 302

Golden Ratio 143

gradient function 78, 87, 93
341
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Index

what sapp:

graphs
of the exponential function 43
and logarithms 27-28, 31-33
of the natural logarithm function
42,43
of parametric equations 105-107
Greek mathematicians 271

Hardy, G.H. 2,78

i, square root of —1 273
identities
in partial fraction methods 167,
168
Pythagorean 61
trigonometrical 56, 125
implicit functions 97-102
indices, and logarithms 25-26
inequalities, involving the modulus
sign 19-21
integrals
indefinite 120, 180-181
involving exponentials and
logarithms 117-118,
183-184
involving trigonometrical
functions 124-126, 187-189
standard 203
integration
by parts 194-201
by substitution (by change of
variable) 177-182
choice of methods 203-205
general 203
numerical 128-131
use of partial fractions, [P8N93
intersection
of a line and a plan®=352-253
of two lines 2343257
of two planes 262
interval bisection 139
intervals
estimation 137-141
notation 136
inverse functions 43
irrational numbers 271
isobars 214
iteration, fixed-point 142—147
iterative process 42

line of intersection, of two planes
262

Www. yout ube. cont negal ect ur e Page3510f353

+92 323 509 4443,

emai | :
lines
angle between 240-242
angle to a plane 256
cartesian and vector equations
227
direction and location 230
intersection 234-240
intersection with a plane 252-253
parallel, intersecting or skew
234-236
liquid, cooling rate 208, 226
logarithmic scales 24
logarithms
base 23, 24,27
discovery 43
and graphs 27-28,31-33
and indices 25-26
integrals involving 117-120,
183-184
laws of 25-27
multiplication and division 25
natural 32, 39-42, 85-89,
183-184
power zero 25
reciprocals 27
and roots 26
to the base{l0" 24
lowest @ommormultiple 165

mental afithmetic 154
modeiling
cufves 30-35
pressure gradient 214
use of double-angle formula 61
waves, by trigonometrical
functions 51, 55, 58
modulus, of a complex number 283
modulus function 17-18
modulus—argument (polar) form of
complex numbers 287-291,
293-294, 296-299
multiplication
of complex numbers 274
of fractions 164
of logarithms 25
of polynomials 4

Napier, John 43
natural logarithm function 39-42,
117-118
see also logarithms, natural

nmegal ecture@mi |l . con

negative numbers 271
square roots 272
Newton’s law of cooling 208-209
number system, historical
development 271-272

oscillations see waves

parameters, eliminating 107
parametric equations 104-116
partial fractions 166172
with a quadratic factor in the
denominator 192-193
with a repeated factor in the
dendn¥pator 191-192
use with tile binomial expansion
1%93-174
use 10 integration 190-193
Paseal’s triangle 156
perpendicular distance from a point
to a line 244-245
perpendicular (normal) to a plane
250-252
planes
angle between 264
distance to a point 254-255
equation 247-248, 250-252
intersection 262-263
sheaf 264
point of intersection, co-ordinates
234-236
polar form see modulus—argument
(polar) form of complex
numbers
polynomial equations
factorisation 9-14
roots 8,9, 11-12
solution 8-14
by means of complex numbers
302-304
polynomials
addition 3
division 5-6
multiplication 4
order 3
subtraction 3—4
position vector 227, 228
of point of intersection 238
pressure gradient, modelling 214
principal argument 287
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principal value, of trigonometrical
functions 75

product rule 78-80

Pythagoras’ theorem, trigonometrical
forms 53

quadratic equations 3

with no real roots 272, 302
quadratic expressions 3
quadratic formula 8,273
quartic and quintic expressions 3
quotient 5, 6
quotient rule 80-82

rcos(0 = a), rsin(f = @) formulae
66-70

Ramanujan, Srinivasa 2

rate of change, and differential
equation 209-212

rational function 164

rational numbers 271

real and imaginary axes 281

real numbers 155,271-272

reciprocals, logarithms 27

remainder theorem 12-13

roots, and logarithms 26

+92 323 509 4443,

emai | :
scalar product 240, 241, 244
secant (sec) 52
separation of variables 215-216
series, infinite 157-158
sets of points
in an Argand diagram 284-286
using the polar form 293-294
sheaf of planes 264
sine graph 76, 92
skew lines 234, 241
spiral dilatation 297
square root
of a complex number 278-279,
298-299
of -1 (i) 273
of a negative number 272
staircase diagram 145, 146
stationary points 80, 99, 100-101
of a parametric curve 111
subtraction
of complex numbers 274
of fractions 165
of polynomials 3—4

temperature—time graph 208
trapezium rule 128-131
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trigonometrical equations, general
solutions 75
trigonometrical functions
differentiation 92-95
integrals involving 124-126,
187-189
principal value 75

P2

xapuj

reciprocal 52-54
trigonometrical identities, using in
integration 125-126

vector equations
of aline 227,228-232
of'a plane 247, 248
vectors
case of use 227
joining two points 227-228
one-dimensional 209
velocity 209

waves
combining 70, 74
modelling 51,55, 58

Wessel, Caspar 281
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