# **Chapter 1 Forces and equilibrium**

# May/June 2002

3



Two forces, each of magnitude 10 N, act at a point O in the directions of OA and OB, as shown in the diagram. The angle between the forces is  $\theta$ . The resultant of these two forces has magnitude 12 N.

(i) Find  $\theta$ .

(ii) Find the component of the resultant force in the direction of OA. [2]

4 A box of mass 4.5 kg is pulled at a constant speed of 2 m s<sup>-1</sup> along a rough horizontal floor by a horizontal force of magnitude 15 N.

(i) Find the coefficient of friction between the box and the floor. [3]

The horizontal pulling force is now removed. Find

(ii) the deceleration of the box in the subsequent motion, [2]

(iii) the distance travelled by the box from the instant the horizontal force is removed until the box comes to rest. [2]

## May/June 2003

2



Three coplanar forces of magnitudes  $10 \,\mathrm{N}$ ,  $10 \,\mathrm{N}$  and  $6 \,\mathrm{N}$  act at a point P in the directions shown in the diagram. PQ is the bisector of the angle between the two forces of magnitude  $10 \,\mathrm{N}$ .

(i) Find the component of the resultant of the three forces

(a) in the direction of PQ, [2]

(b) in the direction perpendicular to PQ. [1]

(ii) Find the magnitude of the resultant of the three forces. [2]

# Online Classes : Megalecture@gmail.com www.youtube.com/megalecture www.megalecture.com

1



A ring of mass 1.1 kg is threaded on a fixed rough horizontal rod. A light string is attached to the ring and the string is pulled with a force of magnitude 13 N at an angle  $\alpha$  below the horizontal, where  $\tan \alpha = \frac{5}{12}$  (see diagram). The ring is in equilibrium.

- (i) Find the frictional component of the contact force on the ring.
- (ii) Find the normal component of the contact force on the ring. [2]

[2]

(iii) Given that the equilibrium of the ring is limiting, find the coefficient of friction between the ring and the rod.

2



Coplanar forces of magnitudes 250 N, 100 N and 300 N act at a point in the directions shown in the diagram. The resultant of the three forces has magnitude R N, and acts at an angle  $\alpha^{\circ}$  anticlockwise from the force of magnitude 100 N. Find R and  $\alpha$ .

### May/June 2005

2



Three coplanar forces act at a point. The magnitudes of the forces are 5 N, 6 N and 7 N, and the directions in which the forces act are shown in the diagram. Find the magnitude and direction of the resultant of the three forces.

May/June 2006

(i) Given that the car's speed increases from 
$$10 \,\mathrm{m \, s^{-1}}$$
 to  $25 \,\mathrm{m \, s^{-1}}$  while travelling a distance of  $525 \,\mathrm{m}$ , find the value of  $a$ .

The car's engine exerts a constant driving force of 900 N. The resistance to motion of the car is constant and equal to RN.

(ii) Find 
$$R$$
. [2]

3



A particle P is in equilibrium on a smooth horizontal table under the action of horizontal forces of magnitudes F N, F N, G N and 12 N acting in the directions shown. Find the values of F and G. [6]

## May/June 2007

2



Two forces, each of magnitude 8 N, act at a point in the directions OA and OB. The angle between the forces is  $\theta^{\circ}$  (see diagram). The resultant of the two forces has component 9 N in the direction OA. Find

(i) the value of 
$$\theta$$
, [2]

(ii) the magnitude of the resultant of the two forces. [3]

# Online Classes : Megalecture@gmail.com www.youtube.com/megalecture TNwww.megalecture.com 75 N

Two light strings are attached to a block of mass  $20 \,\mathrm{kg}$ . The block is in equilibrium on a horizontal surface AB with the strings taut. The strings make angles of  $60^\circ$  and  $30^\circ$  with the horizontal, on either side of the block, and the tensions in the strings are TN and 75N respectively (see diagram).

- (i) Given that the surface is smooth, find the value of T and the magnitude of the contact force acting on the block. [5]
- (ii) It is given instead that the surface is rough and that the block is on the point of slipping. The frictional force on the block has magnitude 25 N and acts towards A. Find the coefficient of friction between the block and the surface.
  [6]

May/June 2008

3



Three horizontal forces of magnitudes F N, 13 N and 10 N act at a fixed point O and are in equilibrium. The directions of the forces are as shown in the diagram. Find, in either order, the value of  $\theta$  and the value of F.

May/June 2009

3



Forces of magnitudes 7 N, 10 N and 15 N act on a particle in the directions shown in the diagram.

- (i) Find the component of the resultant of the three forces
  - (a) in the x-direction,
  - **(b)** in the y-direction.

[3]

(ii) Hence find the direction of the resultant.